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NOMENCLATURE

English Symbols

a — bandwidth of a first-order command prefilter

a;; — 15t element of the state matrix of a linear system

A — state dynamics matrix of a linear system

B — control input distribution matrix of a linear system
C — state output distribution matrix of a linear system
CAS — aircraft calibrated airspeed

D — direct output distribution matrix of a linear system
D — diagonal scaling matrix

D — total aircraft drag

E — total energy, i.e. kinetic energy plus potential energy
FPA — aircraft flight-path angle

g — gravitational acceleration

G(s) — transfer function matrix of a linear dynamic system
h — altitude above ground level

H — external disturbance output distribution matrix for a linear system
] — imaginary number defined by j = /=1

Ji — quadratic performance index at the i** plant condition
ky, ky — design parameters in velocity command variable

K — a complex gain matrix

K — a controller feedback gain

Krp — proportional feedback gain to the throttle

Kry — integral feedback gain to the throttle

Kgp — proportional feedback gain to the elevator

Kg; — integral feedback gain to the elevator

K, — pitch rate feedback gain to the elevator

Ko — pitch attitude feedback gain to the elevator

K, — airspeed error feedback gain to the throttle

Vi



Ky — altitude error feedback gain to the elevator

L — lagrangian variable

L — turbulence scale length

m — mass of aircraft

m — number of controller outputs

T max — maximum number of independent controller parameters
N, — number of off-nominal plant models

Ngr — number of design requirements expressed in penalty functions
P — design parameter vector in the controller matrices
p — number of controller inputs

q — aircraft pitch rate

Q@ — output-weighting matrix in penalty function

r — number of controller states

R — control-input weighting matrix in penalty function
RMS — root-mean-square

S — time integration variable

s — complex frequency, i.e. s = 0 + jw

t — time

T — aircraft total engine thrust

T — a similarity transformation matrix

TECS  — total energy control system

u — aircraft x-axis velocity component

u — control input to a dynamic system

v — eigenvector of a matrix

| % — aircraft total velocity

w — disturbance input to a dynamic system

W; — penalty function weighting assigned to the i*® plant condition
|4 — external disturbance covariance matrix

T — state vector for a dynamic system

X — state covariance matrix

] — output of a dynamic system

Y — output covariance matrix
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Greek Symbols

a — aircraft angle of attack
— angle between damping line and the negative real axis

— design destabilization factor

6(t)  — Dirac delta function

) — incremental control input to a linear system

AV — airspeed error

Ah — altitude error

€ — accuracy of constraint on system eigenvalues

v — aircraft flight-path angle

r — external disturbance input distribution matrix of a linear system
K — upper bound on the H*®-norm of a transfer matrix

A — eigenvalue of a square matrix

=

—
~~

N—

unit step function defined as p(t) =0 for t <0 and p(t) =1fort >1

Wn — undamped natural frequency

¢ — power spectral density function of a random process
@ — a scalar multiplier

o — real part of a complex number

o4 — value of constraint on real parts of eigenvalues

o? — variance of a random variable

T — time variable

0 — aircraft pitch attitude

¢ — damping ratio of an eigenvalue

q — value of damping constraint on system eigenvalues
Subscripts

act — actuator model

c — command input

c — control input

emd  — steady-state value of command

d — disturbance model

€ — error between commands and system outputs
viil



f — final value

GW  — aircraft gross weight

e — elevator control

ec — elevator command

ew — disturbance input to elevator command path

z — plant model index

1 — row index of a matrix element

i — index of a vector element

IE — integral of total energy rate error

IL — integral of energy rate distribution error

m — command model

P — plant model

S8 — steady-state value

t — time variable

th — thrust per unit of aircraft gross weight

the — commanded thrust per unit of aircraft gross weight
thw  — disturbance input to throttle command path

Tc — thrust command

u — x-axis wind velocity component

w — z-axis wind velocity component

0 — nominal plant condition

0 — 1nitial value

Superscripts

(k) — k' performance requirement in a penalty function
* — adjusted command variable in a performance index

! — closed loop model

Mathematical Operators

| -] — absolute value operator

|- r — Frobenius norm of a matrix
|- lle — infinity norm of a matrix
E,[ — expectation operator for a system destabilized by a factor «
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— exponential function

— maximum singular value operator for a square matrix
— minimum singular value operator for a square matrix
— supremum operator

— matrix transpose

— trace operator for a matrix

— partial differential operator

— ordinary differential operator



Summary

A multivariable control design method based on constrained parameter optimization
has been applied to the design of a multiloop aircraft flight control system. Specifi-
cally, the design method is applied to

e Direct synthesis of a multivariable “inner-loop” feedback control system based

on total energy control principles,

[£

o Synthesis of speed/altitude-hold designs as “ outer-loop” feedback/feedforward

control systems around the above inner loop,

o Direct synthesis of a combined “inner-loop”and “outer- loop” multivariable con-

trol system.

The design procedure offers a direct and structured approach for the determination of
a set of controller gains that meet design specifications in closed-loop stability, com-
mand tracking performance, disturbance rejection, and limits on control activities.
The presented approach may be applied to a broader class of multiloop flight control
systems. Direct tradeoffs between many real design goals are rendered systematic
by this method following careful problem formulation of the design objectives and
constraints. Performance characteristics of the optimized design have been improved
over the current autopilot design on the B737-100 Transport Systems Research Vehi-
cle (TSRV) at the landing approach and cruise flight conditions; particularly in the
areas of closed-loop damping, command responses and control activity in the presence

of turbulence.

xi



Chapter 1

INTRODUCTION

Recent development in multivariable control design techniques have been focused
on the improvement of controller performance and robustness to uncertainties in the
plant model. Modern control system design methods such as LQG/LTR, H*, and
p-synthesis can provide controllers with high levels of performance and robustness
[Refs.1-3]. However, the controllers obtained with these techniques are usually of
high order. The number of controller states is usually greater than or equal to the
number of states in the plant model. Controller order must subsequently be reduced
for the final design implementation. In addition, these design methods do not pro-
vide direct tradeoffs between many real design performance and robustness measures.
Alternative methods based on output feedback are available [Refs.4-6] to synthesize
controllers of low dimensionality. In particular, the design algorithm developed in
Reference 6 provides a convenient framework for designing optimal low-order con-
trollers. Recent extension of this method [Ref.7] and the use of constrained nonlinear
optimization [Ref.8] enable designers to address conveniently those requirements, for
example, eigenvalue and covariance constraints, that are not easily expressible in
terms of an objective function based on quadratic performance indices.

Traditionally, classical design procedures based on single-loop closure and root-
locus have been applied to the design of multiloop control systems. Designs obtained
with conventional methods can have minimally achieved performance and inadequate
robustness to plant model uncertainties. Tradeoffs between performance and robust-
ness requirements are far from simple and can be time-consuming; especially when
the designer lacks appropriate past design experiences or when he is faced with a non-
conventional design case. Furthermore, the classical design procedures often overlook,
due to their single-input/single-output nature, the intrinsic multivariable aspects of
the design problem. As a result, the controllers may not contain appropriate cross-
feed among individual feedback loops, and thereby limiting the maximally achievable
performance.



Complexities in present automatic flight control systems (AFCS) for commercial
transport aircraft are generally associated with the lack of suitable control system
design integration, i.e crossfeed among different control paths. Recent work by
Lambregts [Refs.9-11] on the NASA B737-100 Transport System Research Vehicle
(TSRV), in improving the operation of the AFCS, has led to the development of a
total energy control system (TECS) for an integrated autothrottle/autopilot design.
The design philosophy incorporates fundamental aspects of the aircraft dynamics in
the formulation of a multiloop controller structure. This innovative design approach
has led to a controller structure that contains key cross-coupling between the elevator
and throttle control loops for improved performance. Selection of the feedback gains
was still performed using classical design procedures [Refs.9-14]. To satisfy multiple
design requirements such as closed-loop stability, control and command bandwidths,
control activities in the presence of turbulence, design robustness to modeling uncer-

tainties, the one-loop-at-a-time iterative procedure can be overly time-consuming.

Initial design and evaluation of the TECS concept were performed on the NASA
B-737-100 Transport Systems Research Vehicle (TSRV) [Refs.12-14]. Selection of
the feedback gains was still a labor-intensive process even though the philosophy of
TECS has inherently reduced the number of design parameters in the control-law
structure. Again classical SISO design procedures without the benefits of past design
experiences provides little insight into the design tradeoff; particularly when the num-
ber of constraints and design variables become large. Resulting “inner-loop” designs
may possess unnecessarily high bandwidths in the control paths. Furthermore, gain
scheduling to different flight conditions and robustness to plant model uncertainties
pose additional complexities to the design problem; hence making the SISO design
procedure lesser attractive than a direct procedure based on constrained parameter
optimization.

Multivariable control design techniques could potentially provide a systematic ap-
proach to the solution for a set of feedback gains that achieve simultaneously de-
sign performance and robustness to plant model uncertainties. One such approach
is provided by the unified design algorithm for robust low-order controllers [Ref.6)
using constrained parameter optimization as fully implemented in the computer pro-
gram SANDY. The design method has found numerous applications in flight controls
[Refs.15-17] and control of flexible mechanical systems [Ref.18]. The work conducted



in this study is to demonstrate the application of the design algorithm to the syn-
thesis of an integrated autothrottle/autopilot "inner” structure based on the TECS
design philosophy. In addition, we perform autopilot designs for speed and altitude
holds based on an existing optimized inner-loop and compare the results with those
obtained from simultaneous redesign of both the inner (i.e TECS) and outer-loops.

The main objective of this work is the formulation of an optimal control problem
addressing the same design objectives as those achieved under classical design ap-
proaches; in this case the design solution is based on direct constrained optimization.
Within this formulation, a systematic approach is developed allowing the design-
ers to achieve multiple design objectives such as damping of system modes, shaping
of loop frequency responses, disturbance rejection, command tracking, and robust-
ness to modeling uncertainties. Using this design technique, feedback gains have
been obtained for the integrated autothrottle/autopilot design on the TSRV vehicle
at two flight conditions. Linear analysis indicates that the design procedure using
constrained optimization yields comparable and improved results in closed-loop sta-
bility, aircraft responses and control activities to turbulence, and robustness in terms
of single-input/single-output gain and phase margins.

This study is divided into three parts:

1. Synthesis of an integrated autothrottle/autopilot “inner”-loop structure based
on the TECS design philosophy,

2. Synthesis of airspeed-hold and altitude-hold “outer”-loops with the previously

designed “inner”-loop,

3. Synthesis of an integrated autothrottle/autopilot using simultaneously design

parameters from both the “inner” and “outer”-loop structures.

A systematic approach to multivariable controller design is developed allowing the
designer to perform tradeoff among different performance objectives such as damping
of system modes, command tracking, shaping of loop frequency responses, disturbance
rejection, and robustness to modeling uncertainties. Direct tradeoffs between design
criteria are conducted in a systematic manner, enabling the designer to explore the

full potentials of the control system. The TECS control system designed under this



approach is found to be sufficiently insensitive to variations in the plant model, while
disturbance rejection requirements to clear-air turbulence and responses to flight path,

acceleration, airspeed and altitude commands are simultaneously improved.



Chapter 2

INTEGRATED AFCS DESIGN

2.1 Review of AFCS Designs

Development of automatic flight control systems (AFCS) for modern transport air-
craft has resulted from the need to reduce pilot workloads and, at the same time,
improve performance and fuel efficiency. The first flight control systems consisted of
a pitch attitude hold system through simple feedback of pitch attitude and pitch rate
to the elevator control. Speed-hold and altitude-hold modes followed soon afterwards
as extentions of the basic flight control system. Design of new control modes has often
proceeded with little or no consideration of existing modes in the AFCS. As a result,
there is numerous replication of the basic flight-path and spe=d control functions in
the navigation and control computer systems [Ref.10].

In recent years, the need to resolve fundamental operational and performance
deficiencies of current AFCS designs has become apparent. Extensive development
programs [Ref.13] have shown that the conventional AFCS design has reached a
fundamental limit such that further improvements cannot be easily obtained within
the existing system architecture.

The fundamental limitation resides in the traditional single-loop design approach
where the throttle and elevator commands are developed separately without regard
to cross-coupling effects in the longitudinal aircraft dynamics. This type of single-
loop approach is evident in the underlying structure of conventional AFCS designs,
Figure 2.1. Flight-path control by the autopilot is achieved through feedback to the
elevator while the autothrottle independently controls speed through the throttles.

The basic AFCS structure has serious design deficiencies. ‘Ia the longitudinal air-
craft dynamics both the elevator and throttle controls produce responses in flight path
and speed. This effect may lead to adverse cross-coupling between the autothrottle
and autopilot when both feedback loops are closed. Performance and stability of the

autothrottle loop may significantly degrade in the presence of the autopilot loop. In



fact, for large flight-path angle commands, the much larger control authority and
bandwidth of the elevator can easily out strip the throttle’s ability to maintain the
commanded speed.

As a result, in 1979 NASA directed the Boeing Company to begin conceptual
development of an integrated flight path and speed control system incorporating many
existing design objectives while avoiding duplication of control functions. Numerous
types of “energy compensation” techniques were investigated and led to the design
and implementation of the so-called total energy control system (TECS) [Refs.9-
11]. The total energy control concept provides an effective means of dealing with
aircraft operational requirements, control nonlinearities and performance limitations
[Refs.12-14].

Key features of TECS are

e Integration of vertical control modes into a single control concept designed

around a fixed “inner-loop” structure,

o Use of cross-feed paths between flight path and acceleration to both the elevator

and the throttles, hence formulation of a multiloop control design structure,
o Control strategies based on total energy rate and total energy distribution rate,

e Command paths for control of flight path and longitudinal acceleration.

These contrast with the conventional approach to AFCS design involving separate
pitch autopilot and autothrottle designs; in which the elevator is directed to control

flight path while airspeed regulation is acquired separately through the throttles.

2.2 Design Objectives

Developmental studies have been directed toward integrating numerous functions of
the flight control system into a single control concept. Several important considera-
tions in the redesign of the AFCS are

o Integration of all vertical control modes into a single control-law concept. The

system should be designed around a fixed inner-loop configuration with outer-



-~

loop control modes generating signals compatible with the inner-loop command

inputs.

e Minimization of transient errors due to cross coupling between commanded in-
puts in the inner-loop structure. The control system should produce a “coor-
dinated” response between the throttle and the elevator controls to command

inputs.
e Elimination of functional overlaps in the AFCS design.

o Protection against exceeding aircraft performance and structural limits by pro-

viding an intelligent hierarchy in control system modes.
e Provision of overshoot-free responses to step command inputs.
¢ Constraint of closed-loop damping of dominant poles to an acceptable level.

e Minimization of control activities to turbulence in accordance with meeting

flight-path and speed tracking requirements at each flight condition.

2.3 Review of the Total Energy Control Concept

Numerous variations of “energy compensation” techniques have been investigated
for improving the simultaneous operation of the autothrottle and autopilot designs
[Ref.13]. Energy compensation becomes the foundation of an integrated AFCS “inner-
loop” structure in TECS. One formulation of the energy compensation technique is
to develop the engine thrust command as a function of the aircraft total energy
rate, while the elevator command is expressed as a function of the distribution rate
between kinetic and potential energies. Key equations governing the total energy
control concept were developed by Lambregts [Refs.9-11]. They are included here for
completeness and to define the structure of the control system used in the constrained
parameter optimization that follows.
The total energy E(t) of the aircraft treated as a point mass is given by

E(t) = %mV(t)2 + mgh(t) (2.1)



where
m = mass of aircraft
V(t) = aircraft total velocity along the flight path
h(t) = altitude

= gravitational acceleration

Q

The total energy rate E(t) is found by differentiating E(t) in equation (2.1) with

respect to time as, ]
B(t) ~ mgV (2) (@ + 7(t)) (2.2)

for small flight-path angle v(t) in radians and assuming that the aircraft mass m is
constant or slowly varying. If we write the equation for the thrust required from the
equations of motion along the flight path, we have
V(t
Toa(t) = mg (2 49 + 000 (23
Assuming that initial thrust is trimmed against drag and the variations in drag with
time are generally slow, then it follows that the short-term thrust requirement for

a desired level of total energy rate is obtained from the acceleration and flight-path

AT, (t) = % X mg (% + 7(t)) (2.4)

This implies that the aircraft total energy can be regulated directly using thrust

angle quantities as

control. However the distribution between kinetic and potential energies cannot be
effectively controlled with the throttles. To distribute the total energy rate between
flight path and acceleration as desired, elevator control must be used. The elevator
primarily provides control of angle-of-attack and thus lift whiie contributing little to
the aircraft total drag, thereby having little effect upon the total energy rate.

Using proportional and integral control on the total energy rate and energy rate
distribution, we develop command strategies for both the thrust and the elevator

controls as

br.(s) = mg (KTPJ’;T—’)("‘S(JS)MB)) (25)

bls) = (Kp+ 2E1) (‘7‘53)—7<(s)) (2.6)




where 7,(s) = 7(s) = 7.(s) and V,(s) = V(s) — Vi(s) represent the errors of flight-path
angle v and acceleration V from the commanded values 7. and V. respectively. The
parameters Krp, K7, Kgp, and Kg; are the proportional and integral feedback gains
to thrust and elevator controls respectively. The basic implementation of this system
is shown in Figure 2.2. The engines can be made to produce the required thrust by
converting the total thrust command into an equivalent engine pressure ratio (EPR)
command and closing an EPR feedback loop around the engine [Ref.11]. Notice that
proportional paths on the flight path +. and acceleration V. commands have been
left out of the current implementation. It was found that direct feedthrough of the
commanded inputs to the controls would produce undesireable overshoots. However
such a problem can be resolved with proper feedforward control as evident in this

study.

2.4 Analysis of the Current Total Energy Control Structure

A careful study of the TECS structure and its characteristics is crucial to the for-
mulation of an optimal control design procedure. The NASA TSRV B-737 research
aircraft was used to define linear longitudinal aircraft dynamic models at two flight
conditions (Appendix E). The chosen flight conditions are listed in Table 2.1. The
first flight condition FLT1 is a typical approach to landing configuration, and the
second flight condition FLT?2 is a cruise condition.

Table 2.2 shows the inner-loop and pitch-damper gain selection for the current de-
sign implementation on the NASA TSRV [Refs.12-14]. The gains Ky and K, provide
feedback of pitch attitude and pitch rate for stabilization of the aircraft longitudinal
rigid-body modes. Notice that the value of Krp was set to zero, thus eliminating
the proportional feedback path to the throttles. Classical analysis indicates that this
feedback gain is not neccessary for closed-loop stability. Furthermore, by eliminat-
ing direct feedback to the throttle, the broken-loop control bandwidth and throttle
activity to turbulence are reduced. Actually this restriction on Krp is not needed
as demonstrated in the optimal TECS design. The additional! degree-of-freedom pro-
vided by the gain Krp can be used to further improve stability of the phugoid and
short-period modes, and to achieve better command tracking performance without

increasing control activity response to turbulence.
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The integral gains Kty and Kg; were chosen to be approximately equal so as to
obtain equal bandwidths in both the -, and V,/g feedback paths. Gain scheduling of
the control system to different flight conditions is achieved through the gains Kcas
and Kgw in the elevator and throttle control loops respectively (Figure 2.2). The
gain schedules are a function of calibrated airspeed (CAS) in fps and gross weight in

pounds and they are given as follows,

. 200 \? -
Kcas = <—CAS) (2.7)
I(GW = mg (28)

With these gain schedules the control-law when implemented will clearly be nonlinear
and time-varying. However in the neighborhood of a design condition, one can still
examine the responses in terms of those from a linear time-invariant system.

The TECS structure as shown in Figure 2.2 introduces an uncontrollable pole at
the origin in the closed-loop system. This results from the additional integration of
the aircraft acceleration variable V(t) in the control system. This means that the
TECS design provides only one integral control action effective on the flight-path
response and not on velocity. Integral control of the velocity variable can only be
obtained through feedback of the velocity error to the inner-loop commands «. and
V./g, as found in an outer-loop control of a speed-hold type autopilot. Design of
outer-loops for different autopilot modes (i.e speed-hold and/or altitude holds) will
be discussed in chapters 7 and 8. In this section, we are primarily concerned with the
redesign of the TECS “inner”-loop gains for improved performance and robustness
using a procedure based on nonlinear constrained optimization.

Figure 2.3 shows frequency responses from flight-path angle and acceleration com-
mands to the respective outputs for the closed loop system at flight condition FLT1.
Note that at zero frequency the transfer function of V(s)/V.(s) has a gain less than
one. Consequently the controller will not maintain the commanded acceleration in
steady state. The TECS architecture simply cannot provide a constantly increasing
thrust command (i.e. a type 2 system in the acceleration command path) when the

error quantities V,(¢) and +.(t) become zero, i.e. when V(t) = V.(t) and ¥(t) = v(t).
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Table 2.1: TSRV B-737 Flight Conditions

Altitude | Weight | CAS | Flaps | FPA | Gear
() | (bs) | (kts) | (deg) | (deg)
FLT1 | 1,500 80,000 | 120 | 40 -3 down
FLT2 { 25,000 | 80,000 [450 |0 0 up

Table 2.2: Current TECS Inner-Loop and Pitch Damper Gains

Krr | Ker | Krp | Kep | Ko | K
04 1252] 00 | 3.36 |6.0]4.0

V. _ or
: Thrust Command|T_ v
. -
Aircraft
Dynamic
Model h
h o -
c - Elevator Command ‘.
Processor

Figure 2.1: Conventional AFCS Autothrottle/Autopilot
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Chapter 3

OPTIMAL CONTROL DESIGN ALGORITHM USING
CONSTRAINED PARAMETER OPTIMIZATION

Development of techniques for multivariable control-law synthesis is aimed at pro-
ducing controllers with desired performance in command tracking and disturbance
rejection along with adequate robustness to plant uncertainties. Numerous multi-
variable control design techniques are available such as standard linear quadratic
gaussian (LQG), linear quadratic gaussian with loop transfer recovery (LQG/LTR),
H*-optimization and p-synthesis [Refs.1-3]. However, simple design procedures for
low-order controllers addressing direct tradeoff between performance and robustness
are still lacking. The procedure based on nonlinear constrained optimization as imple-
mented in the computer program SAN DY [Refs.6,7,15,21] seems to offer a practical
alternative amidst the abundance of multivariable robust control design schemes. In
this section, we describe the formulation of models for control-law synthesis, and the

definition of various performance indices and constraints used in the design algorithm.

3.1 Formulation of Models for Control-Law Synthesis

Aircraft dynamic models for linear control-law synthesis are usually obtained from the
linearization of a full nonlinear model in real-time simulator about some predefined
equilibrium points. A linearized plant at the :** condition is modelled as a continuous

linear time-invariant system of the form

$,(t) = Alzi(t) + Biuy(t) + Twi(t) (3.1)
y,(t) = Cizp(t) + Dyuy(t) + Quuwj(t) (3.2)
yo(t) = Cizi(t) + Dyuy(t) + Qwi(t) (3.3)

where the matrices A;, B}, F;, Ci, D!, C;,, D} and ©; contain the plant dynamics,
actuator and sensor models, disturbance and command generator filter models, etc.,

(t =1,...,N;) and N, is the total number of design conditions. The output vector
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y.(t) represents the sensor variables of the :** plant condition. The vector y!(¢) in
equation (3.2) contains not only the measured feedback quantities such as pitch rate,
pitch attitude, airspeed, etc..., but also the tracked commands (Appendix B) which
are outputs of a command generator model. This model is often imbedded as part of
the augmented plant description. For example, y,(t) = {q,8,7, V, v, Vz}. The output
vector y(t) contains those outputs used in the performance index of section 3.2 .
The design method based on nonlinear constrained optimization requires a-priori
the setup of a predefined controller structure for both the feedback and feedforward
control systems. The form of the controller is quite general. The complete arbi-
trariness allowed in the controller structure means that designers will have the direct

responsibility to:

1. Setup a control-law with adequate number degrees of freedom so that the design
algorithm will converge to a solution that meets the desired performance goals

and the specified set of design constraints and,

2. Avoid overspecifying the design parameter set (especially in the case of a nonmin-
imal state realization of the controller). This could lead to nonunique solutions

or to the breakdown of the search algorithm.

A typical feedback/feedforward controller has the form

e(t) = Aczc(t) + Beue(?) (3.4)
yC(t) = chc(t)'{'Dcuc(t) (35)

where the state matrices A,, B., C. and D, describe the form of dynamic compen-
sation (i.e. proportional, integral, derivative, leads, lags, etc.) applied to the input
vector u.(t). The controller output vector y.(t) contains the feedback controls and
those output variables that are expressed as linear combination of controller states
z.(t) and controller inputs u.(t). Most linear time-invariant controllers can be put
into this form with individual feedback gains appearing in the elements of the state
matrices A., B., C., and D.. Note that a closed-loop system is formed by connect-
ing:(1) the outputs y.(t) in equation (3.5) of the controller state model to the inputs
u(t) in equations (3.1)-(3.3) of the plant model and, (2) the plant output vector y;(t)
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to the input vector u.(t) of the controller state model. This action of loop closure
between the plant and the controller models is automatic and carried out inside the
design package SANDY.

In chapter 4 we will describe the formulation of a TECS controller using equations

(3.4) and (3.5).

3.2 Description of a Design Algorithm Based on Nonlinear Constrained Optimiza-

tion

As mentioned in the introduction, the design method proposed in this study is based
entirely upon the minimization of a performance index for a set of closed-loop systems
subjected possibly to additional design constraints such as closed-loop stability, co-
variance responses to process and sensor noises, and bounds on robustness measures.
A nonlinear programming technique [Ref.8] implemented in the numerical library
NPSOL is used to solve the control problem with nonlinear design constraints.
Typical performance measures in optimal control are quadratic penalties on the
closed-loop system output and control responses to random disturbances. Three types
of random disturbances are considered in the design problem: initial conditions, im-
pulse inputs and white-noise inputs. Depending on the types of disturbances, different
formulations of the performance index will be used. For the ¢** plant condition, the

performance index to initial conditions or impulse inputs has the form

Ji(ty) = %/Otf eza"E[y;T(t)Q‘y;(t) + u;T(t)R‘u;(t)]dt (3.6)

and for white-noise inputs the performance index is

Tt) = 5 EalliiT(0)Qu (1) + uiT (1) R (1) (37)

where y;(t) and u:,(t) are respectively the closed-loop responses of the performance
and controller output variables (since uj(t) = y.(t)) . The operator Eq[-] is the
expected-value operator corresponding to a closed-loop system destabilized by a factor
a;. The matrices Q' and R’ are the usual penalty weighting matrices on the system
performance outputs and control inputs respectively. Evaluation of the performance
index in equation (3.6) is done using the equivalence relation established in Appendix
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A. The parameter «; is used to ensure that, when a steady-state optimal solution has
been found, the closed-loop system eigenvalues of the controllable modes will have
real parts less than —a; at the :** plant condition. The formulation of the outputs
y;(t) in equation (3.3) is general and can be defined to include the plant states z,(t),
the controller states z.(t) and the controller inputs u.(t). The plant states z}(t) are
modeled in the performance outputs y;(t) by letting C,'; =1, D;, = Q; = 0. The
controller states z.(t) and the controller inputs u.(¢) are modeled through the term
D; in equation (3.3) and with u} = y. established in the feedback connection.
Design gains from selected parameters within the controller matrices are deter-

mined such that a performance index of the form

Np
Jt) = S Wi (3.38)
=1
is minimized. Individual performance index J;(i = 1, N,) is one of those shown

in equations (3.6) and (3.7). Performance indices are evaluated to an a-priori se-
lected finite terminal time ¢; during the initial optimization. Efficient algorithms to
evaluate the performance index J(t;) and its gradients with respect to the design pa-
rameters have been developed [Ref.6] that are comparable to those in the evaluation
of the steady-state pérformance index (i.e based on Lyapunov solutions) in terms of
computational time and accuracy. In fact, steady-state covariance responses can be
accurately calculated by using a sufficiently large t; (e.g. at least 4-times the slowest
time-constant of the closed-loop system modes). The terminal time ¢; is increased
following each successful convergence in order to recover the steady-state solution.
This gradual process of recovering the steady-state solution ensures that the final
optimal solution will be a stabilizing one. The criterion for determining whether a
steady-state solution has been reached is based on the condition that value of the
optimized objective function will not vary by more than .1 percent from its previous
value obtained for a smaller terminal time ¢;. Experiences gathered so far seem to
justify the use of a performance index based on a finite terminal time. This procedure
avoids the difficulties encountered by conventional methods based on the Lyapunov
equation for the steady-state covariance responses, requiring special provision to han-
dle the case when the controller design becomes destabilizing during the search. Note

that by starting with a sufficiently small terminal time ¢; our design method can even
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be initiated with a controller design guess that is not stabilizing.
The performance index J given in equation (3.8) enables designers to incorporate
classical measures of design robustness or sensitivity to plant modeling uncertainties

of the following types,

1. Gain and phase margins in the control and sensor paths,

o

. Roll-oft in the broken-loop frequency responses evaluated at the control and

sensor feedback paths,

3. Sensitivity of the closed-loop eigenvalues and the closed-loop performance mea-

sures to perturbation in the plant model parameters.

The first and second items are useful measures of robustness to unmodelled dynamics.
The third item is a measure of robustness to uncertainties in the coefficients of the
plant model.

As seen in equation (3.8), our design algorithm for robust low-order controllers
[Ref.6] involves an objective function that combines together several quadratic penal-
ties of closed-loop system responses at different plant conditions. A simultaneous
control-law synthesis to a set of multiple plant conditions allows the direct inclusion
of robustness measures of type 3 into the design objective. Design to robustness
measures of types 1 and 2 can be handled through the use of frequency-weighted
performance functions and H*-norm bounds on selected system transfer function
matrices [Refs.7,19].

Specifically, robustness to plant parameter uncertainties or variation in design
condition is achieved by using a set of quadratic performance indices that encompass,
in addition to the one at the nominal design condition (i=1), other off-nominal design
conditions weighted by the design parameters W; (i = 2,..., N,) as in equation (3.8).
To impose design robustness to unmodeled dynamics, one may define additional plant
conditions that have performance indices representing penalties on control and sensor
loop responses to high-pass noises injected separately into the control and sensor
paths, or on the H*-norm of desired system transfer function matrices.

Design for command following and tracking problems is done by formulating syn-

thesis models and performance indices that penalize transient responses of the errors



19

between the actual and the commanded outputs. The commanded outputs (e.g fil-
tered step, ramp, sinusoidal functions) are derived from a command generator model,
a part of the augmented plant model, by using a combination of initial conditions
and impulse inputs. If proportional and integral controls are desired in the feedback
design, it is crucial that formulation of the design performance index reflects the need
for an integral control action. The integral gains in the controller matrices tend to
become ineffective (i.e converge to small values) when the objective function consists
of responses to gaussian random disturbances of zero mean. In general, integral con-
trol requirements must be defined in terms of a performance index that penalizes
transient error responses of the controlled variables in the presence of parameterized
random disturbance inputs where the generating time functions have nonzero con-
stant steady-state components. That is, integral action is meaningful in the optimal
design when it is used to compensate plant responses in the presence of parameterized
random constant disturbances.

Maﬁy types of parameterized random commands, such as impulse, step, and ramp
inputs, are derived from responses of linear time-invariant shaping filters to random
initial conditions or to impulse inputs of random magnitudes (Appendix B, section
B.1). Outputs of these filters are interpreted as parameterized random commands
whose magnitude y.nq is a random vector with zero mean E[y.mq4] = 0 and covariance
ElyemayX 4] = Yema. Elements of the magnitude vector y.,q are uncorrelated when
its covariance matrix Y,,q is diagonal. '

Random disturbances, such as Dryden or approximate Von Karman turbulences,
are outputs of stable linear shaping filters excited by white-noise inputs w(t) (Ap-
pendix B, section B.2) with zero mean E[w(t)] = 0 and covariance E[w(t)wT(r)] =
W,oé(t — ).

Design requirements which cannot be easily handled through a quadratic perfor-
mance index are enforced through linear constraints, nonlinear constraints, and direct
bounds on the design parameters. Nonlinear constraints on the closed-loop stability,

performance, and robustness are defined as follows,
e Closed-loop stability of selected eigenvalues:
Ci ..>. Ciminv (2 = 19 "'1n) (39)

o; < Oimax (2 = 11 '"9n) (310)
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where (; is the damping ratio and o; is the real part of the :** eigenvalue. For-

mulation of these non-linear constraints is described in Appendix C.

Closed-loop mean-square responses:

o2 < lim Ely:(t)) <o (3.11)

Pt min — ty—

where the parameters o2, . and o, define respectively the allowable lower
and upper bounds on the mean-square response of the :** plant output Yp, toO

random disturbances.
Desired H*-norm bounds on closed-loop performance variables:
Kmin _<_ ”Gyw(]w)”oo S Kmaz (312)

where ||Gyu(jw) |l = sup,, & (Gyw(jw)) and G,y (s) is the transfer function ma-
trix of the closed-loop system between the plant disturbance inputs w(s) and

the plant outputs y,(s).



Chapter 4
TECS PROBLEM FORMULATION

4.1 Formulation of Synthesis Models

The NASA B-737 TSRV aircraft [Refs.12,13,24] is used in this study of a total en-
ergy control system design based on nonlinear constrained parameter optimization.
Longitudinal aircraft models are generated for the landing-approach and cruise flight
conditions described in tables E.1 and E.2 (Appendix E). The linearized aircraft

dynamic models have the form

Io(t) = Apz,(t) + Byuy(t) + Tow,(t) (4.1)
yp(t) = Cpzp(t) + Dpup(t) + Qpwy(t) (4.2)
where z,(t) contains the aircraft rigid-body states, u,(t) the elevator and throttle
control inputs, w,(t) the wind components and the command inputs, and y,(t) the

measurement and the performance criterion outputs. The aircraft models are subse-

quently augmented with appropriate linear control actuation models of the form

iact(t) = AactIact(t)+Bactuact(t) (43)
up(t) = Cactxact(t)+Dacluact(t) (44)

Turbulence and command generation models are described by

i’d(t) = Adxd(t)-{—Bdwd(t) (45)
wp(t) = Caza(t) + Dywa(t) (4.6)

They contain the commonly used Dryden or approximate Von Karman turbulence
spectra [Ref.23]. Power spectral densities for Dryden turbulence models are given by
o Ly 1
LT
TV 1+ (Lw/V)
2 Ly 143 (Lyw/V)?
w 2
20V 1L+ (Luw/ V)Y

¢, (w) (4.8)
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where o, and o,, are the root-mean-square intensities of turbulence (figure 4.2) with

%% _ Tu

The parameters L, and L, are turbulence scale lengths defined as a function of
altitude:

e For altitude above 1750 ft: L, = L, = 1750 ft

e For altitude below 1750 ft: L, = 145k!/3, L, = h where h is the altitude in feet.

Aircraft rigid-body dynamics are augmented with models for the control actuators
and disturbances; the latter variables contain not only the wind inputs but also the
command signals (Appendix B). The resulting plant model forms a synthesis model
in the form of equations (3.1)-(3.3). An automated procedure for formulating the
synthesis model is implemented in a user-defined function for the MATLAB! control

system software. A listing of the command procedure is given in Appendix F.

4.2 An Optimal Design Approach for TECS

The design algorithm for robust low-order controllers [Ref.6] implemented in the com-
puter design package SANDY is applied to the design of an integrated AFCS. The
total energy concept defines the “inner-loop” structure for an integrated autothrot-
tle/autopilot control system and provides a basis for a multiloop control design. The
basic TECS feedback controller shown in figure 2.2 with a pitch damper can be for-

mulated into a controller state-space model of equations (3.4) and (3.5) as follows,

, 1%
TIE 0 0O TIE -1 —1/g 0 0 1 l/g
in | =000 zm |+ 1 —1/9 00 =1 1/g Z
fv, 000(\ av 0O 0 00 0 1
Ye
\ Ve /
(4.10)

! MATLAB is a trademark of The MathWorks, Inc.
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e [ KowKr1 0 0 TIE
bee = 0 KcasKgr 0 TrL
Ve 0 0 k| \ 2y
[ 7
- i 1%
—I\Gwl\'rp —I\wa('[*p/g 0 0 0 0
r e r Ve r i d q
+ KcasKep —KcasKeplg KcasKy KcasKg 0 0 8
0 0 0 0 k, 0
- Ye
\ Ve /
(4.11)

Proportional and integral gains Krp, Kgp, K11 and Kg; along with the pitch damper
gains K, and Ky and the additional gains k, and k; are design parameters in the
controller state matrices. The gain schedule parameters Kgw and K¢4s are assumed
fixed at each plant condition and their contribution to the overall feedback gains can
be absorbed into the other feedback gains. The design parameters are selected from

the minimization of a performance index J of the form

Np
J=ZW,-J,- (4.12)
=1
where .
R
Ji=Y JP=1,.,Np) (4.13)
k=1

and W; is a weighting factor assigned to the performance index J; at the i** plant
condition. Within each individual plant condition, performance indices J,-(k) (k =
1,...,Ng) are used to address Ny different control design requirements. Design re-
quirements defined in J,-(k) may be conflicting. Compromises among the conflicting
requirements are usually made in the final design solution through iterative adjust-
ment in the penalty weighting matrices.

In the optimal TECS design problem, the objective function at each flight condition

is made up of at most three different performance indices Jl(k)(k =1,2,3),

3
Jh=Y Jf (4.14)
k=1



The first performance index Jl(l) is formulated to address design requirements in

command tracking performance. It is given by

I = tim 5 [7 EIQ2(0) — () + Qu(V(E) = VEWPN (4.15)

ty—o 2 Jo

This performance index is evaluated to parameterized random filtered step commands
in V. and v, with V,(t) = Veoae @ u(t) and v.(1) = Yeo(1 — €7 )pu(t) where p(t) is the
unit-step function. The parameter a determines the bandwidth of both the acceler-
ation and the flight-path commands. In this design case, we use a = 1.2rad/sec, a
typical value for flight-path and velocity command bandwidths. The variables V_, and
Yo are random parameters with zero means and covariances E[V3] = of = 1.0(fps)?
and E[y%] = 02 = 1.0(deg)?. The command V,(t) is computed simply as the integral

2
of the acceleration command V,(t), i.e.

Vi(t) = [ Vi(r)dr (4.16)

The quantity V*(t) is an output of the controller model given in equation (4.11). It
1s used in the criterion output V(¢) — V*(t) and is defined as a linear combination of

the commanded velocity V.(t) and flight-path angle ~.(t), namely
V() = kVe(t) + ke (2) (4.17)

The parameter &, depicts the achieved level of commanded velocity in steady-state.
Recall that the TECS design structure in figure 2.2 does not include feedback of veloc-
ity error, hence it is a type 0 system in the velocity variable V. Thus, in steady-state
the aircraft velocity V(t) does not settle to the command value V,(t), and the param-
eter k; is always strictly less than one (i.e k&; < 1). The parameter k; is the amount of
cross-coupling between flight-path command ~.(t) and aircraft steady-state velocity
V(t). Either parameter k; and/or k, can be set to lie within some desired values us-
ing direct bound constraints. For our design, the inequality constraint —1 < k; <1
ensures that for one degree of flight-path angle command ~.(t), the change in air-
craft steady-state velocity is less than one foot-per-second in magnitude. Clearly,
for perfect decoupling where one does not allow changes in aircraft velocity during a
flight-path angle command, k; would be constrained to be equal to zero. The parame-

ters k; and k; are determined during the optimization such that bound constraints on
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ky and k; are satisfied and the term (V/(¢)—V.*(¢)) in the integrand of the performance
index Jl(l) in equation (4.15) vanishes in the limit as ¢y — oo.

The second performance index Jl(z) is set up to perform trade-off in the control
bandwidth of the throttle loop. It is defined as

1
JP = lim B[R (1)) (4.18)
=

The performance index Jlm is evaluated to a high-pass noise input in the thrust
command loop [Ref.25]. The noise input is generated from the response of a first-
order filter to white-noise with zero mean E[§,4,,(t)] = 0 and covariance E[ép,,(t +
T)bhw(t)] = 62,,6(7). The quantity (1) is the thrust feedback control as shown in
figure 4.1. Cut-off frequency of the high-pass filter is set approximately equal to the
desired broken-loop throttle control bandwidth (i.e. ws, , = 0.2 rad/sec). Frequency-
shaping of the disturbance input to the thrust command ensures that only control
responses at high frequencies are penalized in Jl(z).

Similarly, the performance index Jl(s) is used to perform trade-off in the control

bandwidth of the elevator loop. It is given by

J® = fim %E[Rgéfc(t ) (4.19)

ty—co

In this case, Jl(s) is evaluated to a high-pass noise input in the elevator command loop.
Again the noise input is obtained from the response of a first-order high-pass filter
to white-noise with zero mean E[é.,(t)] = 0 and covariance E[6.,(t + T)bew(t)] =
02,6(t). The quantity é,..(t) is the elevator feedback control. Cut-off frequency of
the high-pass filter is approximately equal to the desired broken-loop elevator control
bandwidth (i.e. ws,, = 2.0 rad/sec). Note that the elevator control has a higher
bandwidth than the throttle control.

Other design considerations besides those depicted in the quadratic performance
indices J,m, Jlm, and J1(3) are defined with the use of direct constraints. For example,
desired closed-loop damping is achieved using the eigenvalue constraint defined in
equation (C.41). Nonlinear damping constraints provide a direct means to achieve

satisfactory damping of aircraft rigid-body modes. And covariance responses of se-

lected outputs to clear air turbulence of Dryden spectra with RMS intensities from



the 99% probability level (figure 4.2) can be bounded using the covariance inequality
constraint in equation (3.11). Nonlinear covariance constraints on control outputs
ensure that the resulting optimal design has reasonable control activities to turbu-

lence.

4.3 Control System Design Tradeoff

The design task involves a proper tradeoff among the following design performance

goals:

e Damping of system eigenvalues,

¢ Command frequency response bandwidths,

¢ Broken-loop crossover frequencies in the control paths,

e Covariance responses of performance criteria,

o Command tracking/following performance,

¢ Disturbance rejection,

® Robustness to plant parameter uncertainties and unmodeled dynamics.

Performance objectives must be identified and established by the designer during the
design tradeoff. If the desired objectives are not attainable, the NPSOL optimization
[Ref.8] would most likely fail to arrive at a feasible solution, e.g. design constraints
are unattainable with the specified controller structure or design constraints are too

stringent and need to be relaxed.
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Minimum damping of the closed-loop system eigenvalues is obtained directly through
specification of the nonlinear damping constraint { > (. If damping requirements
are too stringent then performance in other areas will be sacrificed. We found that
it is generally easier to achieve the desired damping level through the use of non-
linear constraints on system modes than with output penalties in the cost function.
Penalties on outputs which are partially related to lightly damped modes may un-
necessarily degrade other system responses. Furthermore, outputs associated with
lightly damped closed-loop modes will be different for different controller designs.

Selection of desired command-loop frequency responses can be achieved through
the penalties ; and @; in the performance index Jlm. Bandwidths of individual
command-loop frequency responses V(s)/V.(s) and 7(s)/7.(s) relate to the ability
of the system to track the respective commands. If the bandwidth in a particular
command loop is too low, increasing the penalty Q; (i = 1,2) on the respective
commanded output error in equation (4.15) will produce a higher bandwidth in that
command path [Ref.25]. This systematic procedure enables designers to achieve sat-
isfactory trade-off of performance in different command loops.

Crossover frequency of a loop transfer function for a system broken at a control
path defines approximately the control bandwidth of that path. Selection of the
control-loop crossover frequencies is accomplished through the penalties R; (1 = 1,2)
in equations (4.18) and (4.19). If the loop crossover frequency of a particular control
path is too high, then higher penalty R; in the respective performance index, i.e. J,m
or J, would lead to a design with a lower bandwidth [Ref.25]. Note that require-
ments for simultaneous low control-loop crossover frequency and high command-loop
bandwidth are generally contradictory. Usually, decreasing control-loop crossover
frequencies will inevitably result in lower command-loop bandwidths.

Upper bounds on root-mean-square (RMS) responses of selected performance cri-
teria and control outputs to Dryden turbulence spectra may be specified to ensure
adequate RMS responses. For the TECS design, throttle and elevator control activ-
ities are the two variables of primary importance. Inequality bounds are therefore
placed on covariance responses of §;,.(¢) and 6..(t) to Dryden turbulence. The upper
bounds are selected from the closed-loop control covariance responses of the current
TECS design. In flight condition FLT2, one has to increase the elevator control activ-

ity in turbulence by a small amount in order to achieve the desired level of closed-loop



damping.
Design robustness in terms of closed-loop stability and performance measures to
plant parameter uncertainties can be improved by using a performance index of the

form given in equation (4.12), i.e.

Np
J =3 WJ (4.20)

i=1
where each performance function Ji(: = 2,..., Np) reflects design considerations at
an off-nominal plant condition. Note that the index ¢ = 1 corresponds to the nom-
inal design condition. Stability in the presence of plant model parameter variations
is defined in terms of damping constraints placed on closed-loop eigenvalues at the
off-nominal plant conditions. When these constraints are satisfied, the resulting con-
troller will then be robust to the given changes in plant conditions. However if the
posed problem is overly constrained, then most likely a feasible solution cannot be
found; in this case, a smaller set of uncertain plant models ought to be tried instead.
An alternative formulation for the robustness criteria is through the H*-norm
bounds of selected system transfer function matrices, e.g ||Gyw(jw)||so.- The H*-norm
IG(jw)||eo 1s defined as the supremum of the maximum singular value of G(jw) for
w € [0,00). From the small gain theorem, H>® bounds on specific transfer function
matrices give guaranteed gain and phase margins for nominally stable systems [Ref.3].

Nonlinear constraints of the form

[Gyu(jw)lleo < & (4.21)

can also be specified in the extended version of the SANDY design algorithm [Ref.7]
for robust stability and performance. Evaluation of this robust design procedure is

left for a future study.

4.4 Gain Schedule at Other Flight Conditions

The design procedure described in section 4.3 will produce controller design gains
optimal at one flight condition. Gain scheduling of the design at other flight conditions
is usually required for optimum performance and may be achieved in one of three

ways:
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1. Design optimum controller gains at individual flight conditions separately. A
gain schedule is developed for each controller gain. Usually it involves some form
of curve-fitting with respect to airplane parameters such as calibrated airspeed

or gross weight in the final design implementation.

2. Preselect a gain schedule for each of the control or sensor paths. Design remain-
ing controller parameters to satisfy all requirements with the preselected gain

schedule structure over the entire set of design conditions simultancously.

3. Design a set of controller gains for a nominal flight condition. Redesign at
other flight conditions based on gain scheduling a subset of controller gains.
This procedure is simple and involves less computational effort in the actual

implementation.

The first method is straightforward and involves doing a separate design for each
flight condition. However, this may result in a gain schedule which is too cumber-
some to implement. In the TECS inner-loop structure, this method would require
scheduling of six separate gains.

The second approach involves deciding upon an a-priori gain schedule for the
control or sensor paths, independent of the optimal design. These gains may be
factored into the synthesis models at each flight condition. A single controller is
then designed to satisfy all flight conditions with the pre-selected gain schedule. The
design method involves defining a performance index similar to equation (4.20) that
covers the entire range of flight conditions. It should be noted that this method
depends upon the selection of a predefined gain schedule and provides no insight into
how the gain schedule should be formulated. If the number of degrees-of-freedom
is not adequately defined in the a priori selected controller structure, then most
likely an optimal solution cannot be found that will meet all the design constraints.
Thus, this method is generally not desireable since it sets the gain schedule around a
predetermined structure that may be overly constrained.

A more practical approach is to select a few gains in the controller which are to be
gain scheduled. These gains are often introduced at the control input paths to provide
compensation for changes in control effectiveness. The procedure in the third method

begins with a set of gains optimized at a nominal flight condition perceived to be the
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most important. Then the gain schedule is determined by optimizing only a selected
subset of gains to other flight conditions while leaving the remaining controller gains
fixed at their nominal values. For example, in the TECS inner-loop structure, the
scheduled parameters are K45 and Kgw while the gains Kgp, K'rp, K1, K11, Ry,
and K, are fixed at the values optimized for the landing approach condition. The
design procedure for optimizing the scheduled parameters and conducting design
tradeoffs at each off-nominal flight condition is the same as described in section 4.3.
This is a preferred approach since it provides insights into the level of improvement

a gain schedule can offer with the selected degrees of freedom.

4.5 Issues for Numerical Convergence

Solution of the minimization problem is based upon a state-of-the-art nonlinear pro-
gramming algorithm implemented in the NPSOL library [Ref.8]. Numerical condi-
tioning of the TECS optimization problem is essential for successful convergence.

Some key considerations are:

e Convergence of the performance integral. The designers must verify that the in-
tegrands of the quadratic performance index will approach zero in steady-state

to the given set of input functions (i.e. white-noise, impulse, step, etc.).

e Formulation of the constrained optimization problem.

¢ Construction of the plant synthesis models.

Performance indices in equations (3.6) and (3.7) and their gradients with respect
to the design parameters are needed for optimization. The design algorithm imple-
mented in the computer design package SANDY evaluates the performance indices
and gradients to a finite terminal time ¢;. In steady-state (i.e. t; — o0), the perfor-
mance index in equation (3.6) or (3.7) would become unbounded when the closed-loop

system contains neutrally stable or unstable modes that are both disturbable from
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the input excitation and detectable in the performance function. Selection of an ap-
propriately small finite terminal time ¢; would help avoid problems associated with
lightly damped or unstable closed-loop poles in the initial phase of the numerical
search.

Design optimization to step commands or constant disturbance inputs requires
careful formulation of the performance index, making sure that the integrands will
settle to zero in the limit as t; — co. Otherwise, the performance integral will be
unbounded. For example, in the TECS problem formulation, the variable V* given
in equation (4.17) was used instead of V. since the error (V — V,) does not approach
zero in steady state for a type 0 system and the performance integral of equation
(4.15) would otherwise be unbounded.

In problems dealing with constrained optimization, the possibility of having an
overconstrained problem always exists. Careful formulation of the design objectives
will definitely minimize problems encountered with nonlinear constraints and thereby
speed up the design convergence. A helpful rule is to start the initial design with
a minimal number of nonlinear constraints. Additional constraints can later be in-
troduced in a systematic manner by order of relative importance and need. In the
TECS design, damping in the aircraft rigid-body modes is of primary importance.
Nonlinear constraints are henceforth used to achieve adequate closed-loop damping.
Constraints on control covariance are included only when the initial design is found
to be unsatisfactory.

Modern nonlinear optimization techniques as found in the NPSOL library require
that design parameters be of approximately the same order of magnitude. If some
parameters are significantly larger than the others, then gradients of the cost function
with respect to these parameters may appear too small; consequently the true opti-
mum may not be reached to a given level of optimality tolerance. Proper selection
of physical units in both the controller and the plant synthesis model ensures that,
at the start, design parameters will have the same relative magnitudes. Here in our
TECS problem, we found that the quantities y(rad) and V' /g have the same order of
magnitude and the feedback gains on these variables have the same size.

Finally, it is crucial that the controller matrices in equations (3.4) and (3.5) form a
minimal realization [Ref.6]. A nonminimal system will contain redundant parameters

that lead to multiple local minima in the optimization. As a rule of thumb, the
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maximum possible number n.,. of independent controller parameters is, for D, # 0,

Mmaz = (M + p)r + mp (4.22)

and for D, = 0,
Nmaz = (M + p)T (4.23)

where r is the number of controller states, p is the number of controller inputs and m
is the number of controller outputs. For example, in the TECS inner-loop structure as
given in equation (4.11), a valid set of design parameters would be C.(1,1), C.(2,2),
D.(1,1), D.(2,1), D.(2,3) and D.(2,4) while the parameters D.(1,2) and D.(2,2)
are related to the above set through linear constraints, i.e D.(1,2) = D.(1,1) and
D.(2,2) = -=D.(2,1).

B 1 () 5
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5 (s) - Synthesis -
— T - Model
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Figure 4.1: High-Pass Frequency Shaping of Control Loop Activities
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Chapter 5
INNER-LOOP DESIGN — SYNTHESIS AND ANALYSIS

In this chapter we examine the synthesis of a TECS inner-loop design at two flight
conditions FLT1 and FLT2 (Appendix E). Results presented in the following sections

illustrate the application of the design procedure described in section 4.2.

5.1 Design for a Nominal Flight Condition

For AFCS designs, tight airspeed and path control is important in the presence of
windshear, particularly at low altitudes and during landing approach conditions. In
this respect, the landing approach flight condition FLT1 was considered most im-
portant and is selected to be the nominal design condition for the TECS inner-loop
gains. These TECS gains are designed to yield optimum performance at this flight
condition.

Designs at other flight conditions are synthesized around this nominal controller
using the gain schedule parameters Kc4s and Kgw (figure 2.2). When optimizing
the TECS inner-loop gains, the gain schedule parameters are not considered as in-
dependent parameters and must be fixed at some selected values. Without loss of
generality, gain schedule at the flight condition FLT1 is selected to be the same as
that of the classical design.

Design parameters in the TECS structure are determined following the procedure
described in section 4.2. Arrival at a final design using constrained parameter op-
timization involves compromise among different design performance goals. For the
landing approach flight condition FLT1, the following design objectives were used:

e The performance indices Jj(: = 1,3) described in equations (4.15), (4.18) and
(4.19) are given below.

(a) Command frequency response bandwidths and command tracking perfor-
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mance:

I = Jim o [Y ERO® - 207 + (VO - VO G)
This performance index is evaluated to parameterized random filtered step com-
mands in V, and 4, with Vc(t) = Vae™® u(t) and 7.(t) = voo(1 —e72)u(t) where
#(t) is the unit step function. The parameter a determines the bandwidth of
both the acceleration and the flight-path commands. In this design case, we
use a = 1.2rad/sec, a typical value for flight-path and velocity command band-
widths. The variables V,, and 7., are random parameters with zero means and
covariances E[V2] = oy, = 1.0(fps)? and E[v2] = 02 = 1.0(deg)?.

(b) Broken-loop crossover frequency in the throttle control loop:

IP = lim 2 EN108(t)) (5.2)
The performance index J,m is evaluated to a high-pass noise input in the thrust
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean E[6.(t)] = 0 and covariance
Elbnu(t+7)benu(t)] = 02,6(7). In this design, we choose oy, = 1. The quantity
dthe(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop throttle
control bandwidth (i.e. ws,,, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:
1
Ji?) = lim 5 EB8Z(L))] (5.3)
g0

The performance index Jl(a) is evaluated to a high-pass noise input in the elevator
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean E[6.,(¢)] = 0 and covariance
E[ew(t+7)6ew(t)] = 02,6(7). In this design, we choose 0., = 0.16 . The quantity
bec(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop elevator
control bandwidth (i.e. ws,, = 2.0 rad/sec).
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e Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,
o; <0 (i =1,n) (5.4)
(b) Damping ratio of the eigenvalues must be greater than 0.7, i.e

¢;>0.7(G=1,n) (5.5)

e Mean square responses of control activities to clear air Dryden turbulence of
oy = 6.6fps and o, = 6.3 fps,

E[6},.] <7.56 x 107*(lbst/lbsw)? (5.6)

E[62] < 6.735 x 10™*(rad)? (5.7)

The above constraints will produce an optimal design (listed under SANDY
in table 5.4) with a covariance in the speed variable V exceeding that of the
classical design. To remedy this design problem, we include in the next design

an additional constraint on the covariance response of the speed variable as
E[V?] < 0.5122(fps)* (5.8)

The optimal design with this additional covariance constraint is shown in tables
5.1 and 5.4 as the optimal design SANDY™.

Sample of an input data file for the computer program SANDY corresponding to
the above design formulation at flight condition FLT1 is given in Appendix F. The
data file contains the plant synthesis model, controller model, disturbance specifica-
tions, penalty weighting matrices, linear constraints, nonlinear constraints and direct
bounds on parameters. The resulting optimal feedback gains and associated design
parameters k;, k; are summarized in table 5.1. The following paragraphs discuss de-
sign results obtained at flight condition FLT1 corresponding to the final optimized
design SANDY™.

In the optimal design SANDY™*, the proportional gain Krp to the throttle, pitch
damper gain K and the decoupling parameter k, differ significantly from the classical
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design. Improved performance and damping are achieved with a nonzero value of K'rp
and a lower gain Ky. Recall that the magnitude of the parameter k, represents the
degree of cross-coupling between flight-path command to steady-state speed error.
This value is reduced in the optimal design in comparison to the classical design.
Gains in the pitch damper have been reduced while those in the proportional and
integral paths to the elevator are kept at the same level as the classical design; hence
maintaining the desired command bandwidth and tracking performance.

Table 5.2 gives the damping ratio and natural frequency of the closed-loop system
eigenvalues. A minimum damping of 0.7 is achieved through the use of nonlinear
constraints; this is an improvement over the minimum damping of 0.64 in the classical
TECS design.

Figures 5.1 and 5.2 show the command and broken-loop control frequency re-
sponses of the classical and the optimized TECS designs respectively. Command and
control-loop bandwidths for these designs are summarized in table 5.3. One design
consideration is to have equal bandwidths in both the flight-path and acceleration
command loops. Equal bandwidths in these command paths imply that transient
errors in the total energy rate and energy distribution rate will decay exponentially
to zero at a same time constant (i.e. coordinated flight-path and speed command re-
sponses). The command bandwidths for the optimal design are similar to those of
the classical design. Notice that the command bandwidths are achieved with a lower
bandwidth in the elevator control path.

Control-loop bandwidths give measures of control sensitivity to unmodeled high-
frequency dynamics in the control paths. Lower control-loop bandwidth means less
sensitivity to these types of unmodeled dynamics. The elevator loop bandwidth in the
optimal design is smaller than that of the classical design at flight condition FLT1.

Figures 5.3 to 5.6 show time responses of the closed-loop systems to step commands
in flight-path angle and velocity. Velocity command is derived from an acceleration
command as in equation (4.16). Results to a velocity command are shown in fig-
ures 5.5 and 5.6. Both the flight-path angle and velocity commands are implemented
through first-order command shaping filters with bandwidths equal to those used
in the control-law synthesis (i.e. @ = 1.2 rad/sec for both commands). Improved
damping in the transient responses of flight-path angle and velocity errors is seen in
figures 5.4 and 5.6. Responses to flight-path angle and velocity commands are similar
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to step responses of a first-order filter. And there is less cross-coupling between the

flight-path command and velocity.

Table 5.4 compares the closed-loop rms responses of the classical and the optimal
designs to Dryden clear air turbulence at the 99% probability level of intensities.
Results clearly illustrate the effective usage of direct bounds on the respective output
covariances. By imposing inequality constraints on the control covariances, one is
guaranteed at the outset that the optimal design, when converged, will have the
same or lower control activities than the classical design. Furthermore, covariance
responses of other aircraft variables are lower or equal to those of the classical design.
In particular, the covariance response of the speed variable V is equal to the value of

the classical design due to the inequality constraint defined in equation (5.8).

Conventional single-loop robustness! analysis gives allowable variations of gain or
phase at either the control or sensor paths, while other remaining loops are closed
at the nominal gains. Gain and phase margins determined from Bode or Nyquist
plots yields the largest allowable variations (one-loop at a time) in loop gain and
phase respectively starting from a nominally stable closed-loop system. Table 5.5
summarizes values of single-loop stability margins. Single-loop stability margins are

found to be satisfactory for both the optimal and classical designs.

Multivariable robustness tests (Appendix D) based on singular values of loop
return-difference matrices provide additional measures of design robustness in terms
of guaranteed multivariable gain and phase margins [Ref.20]. The results may be con-
servative but they are applicable to simultaneous variation of gain and phase in each
loop. Figures 5.7-5.12 show plots of minimum singular values of the return-difference
and the inverse-return-difference transfer matrices respectively at both the control
and sensor paths. In these plots, diagonal scaling [Ref.23] on the transfer function
matrices has been used to reduce conservatism and thereby improve estimates of ac-
tual multiloop stability margins. Table 5.6 gives guaranteed multivariable stability
margins in both the control actuator and sensor paths according to equations (D.8)
and (D.14) of Appendix D. Both the optimal and classical designs possess similar

multivariable stability margins. Note that requirements for robustness have not been

! Robustness margins are defined as the amount of allowable gain and phase increases prior to the
onset of instability.
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defined in the control-law synthesis. Systematic methods for improving design ro-
bustness are discussed in section 4.2. Robust control-law synthesis using H*-bounds

or u-measure will be the subject of a future study.

5.2 Determination of Gain Schedule

Gain scheduling of the TECS inner-loops is necessary in order to satisfy performance
and stability requirements at other flight conditions. Gain scheduling between a
landing approach condition and one other cruise condition FLT?2 is considered in this
study. The objective is to demonstrate the usage of nonlinear constrained optimiza-
tion in the design of gain schedule. Design results are discussed in the following
paragraphs. The gain schedule design is obtained by re-optimizing the gains Kow
and Kcus in the throttle and elevator paths respectively. The TECS proportional,
integral and pitch damper gains K7p, Kgp, K11, KEI, Kq, and Kj are held constant
at the values optimized for the landing-approach condition FLT1. Another set of
design objectives are established for the cruise condition similar in form to that given

in equations (5.1)-(5.8). They are as follows,

o The performance indices Ji(i = 1,3) described in equations (4.15), (4.18) and
(4.19) are given below.
(a) Command frequency response bandwidths and command tracking perfor-
mance:

I = lim o [7 BRGE) -0 +2VEO) - VIOl (5.9)

ty—oo 2

This performance index is evaluated to parameterized random filtered step com-
mands in V, and 7. with Vi(t) = Vieae™u(t) and v.(t) = 7eo(l — e~ u(t)
where p(t) is the unit-step function. The parameter a determines the band-
width of both the acceleration and the flight-path commands. In this design
case, we use a = 1.2rad/sec, a typical value for flight-path and velocity com-
mand bandwidths. The variables V,, and 7., are random parameters with zero
means and covariances E[V2] = o}, = 1.0(fps)? and E[y2] = 02, = 1.0(deg)>.
(b) Broken-loop crossover frequency in the throttle control loop:

JO = Jim %E[205,2hc(t )l (5.10)
7 —00
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The performance index Jl(z) is evaluated to a high-pass noise input in the thrust
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean E[éu,(t)] = 0 and covariance
Elbihe (t +7)bthu(t)] = 62,,6(7). Again, we choose oihy, = 1. The quantity &;s.(t)
is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of the
high-pass filter is set approximately equal to the desired broken-loop throttle
control bandwidth (i.e. ws,,, = 0.2 rad/sec).
(c) Broken-loop crossover frequency in the elevator control loop:

I = Jim 2 BI6SL () (.11)
The performance index Jl(s) is evaluated to a high-pass noise input in the elevator
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean FE[6.,(?)] = 0 and covariance
Elbew(t + 7)beu(t)]) = 02,6(7). Again, we choose 0., = 0.16 . The quantity é..(¢)
is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of the

high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. ws,, = 2.0 rad/sec).

Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,
0, <0 (i =1,n) (5.12)
(b) Damping ratio of the eigenvalues must be greater than 0.6, i.e

¢ >06(i=1,n) (5.13)

Mean square responses of control activities to clear air Dryden turbulence of

o, =4.7fps and o, = 4.7 fps,
E[6%,] < 1.804 x 10™5(Ibst/lbsw)? (5.14)

E[62)] £3.2 x 107%(rad)? (5.15)
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It turns out that no feasible solution can be found to satisfy simultaneously the
closed-loop damping constraint of at least 0.6 and an elevator control activity to
turbulence less than or equal to that achieved under the classical design. Thus
the covariance bound on the elevator control is set to a value slightly higher than
the value obtained from the classical design. Note that the selected bound on
the elevator control activity to turbulence still yields acceptable level of control
activity to the given level of turbulence. Recall that in the gain schedule design,
the optimization has only two design parameters Kgw and Kcas. As we have
demonstrated in flight condition FLT1, results of the classical design at flight
condition FLT?2 could similarly be achieved if we re-optimize all the inner-loop
gains. Re-optimization of all the inner-loop gains at the flight condition FLT2 is

presented in chapter 7 along with an altitude and speed-hold autopilot design.

Gain schedule developed for the parameters Kgw and Kcas at the two design flight
conditions and associated design parameters k; and k, are shown in table 5.7. As
previously mentioned, gain schedule at the nominal flight condition FLT1 is chosen
to be the same for both the optimal and classical designs.

At flight condition FLT?2 the optimized gain schedule based on the inner-loop
design optimized at flight condition FLT1 is quite different than the one chosen
in the classical design. Design procedure for the selection of gain schedule in the
classical design is usually based on closed:loop stability. It may not consider other
design objectives such as tracking performance and control activities in the presence
of turbulence. |

Table 5.8 shows the damping ratio and the natural frequency of the closed-loop
system eigenvalues. A minimum damping of 0.6 is achieved in the optimal design
through the use of nonlinear constraints on the closed-loop system eigenvalues. The
result is improved over the conventional TECS closed-loop damping of 0.45. It is
found by increasing the minimum damping requirement that higher damping of 0.7
for all modes is not achievable with simple gain scheduling of the parameters Kgw
and K¢as. Furthermore, the covariance constraint on the elevator control activity to
turbulence with upper bound set equal to the value obtained in the classical design
cannot be satisfied together with a minimal damping of 0.60 using only the design

parameters Kgow and Kggs.
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Figures 5.13 and 5.14 show the command and the broken-loop control frequency
responses at flight condition FLT2. Command and control-loop bandwidths are sum-
marized in table 5.9. Bandwidths in the flight-path and acceleration command loops
are made nearly equal in the optimal design through adjustment of the design weight-
ing parameters ¢}; and @, in the cost function Jél). The throttle control-loop band-
width is significantly reduced in the optimal design; however, this result comes at
the expense of an increased bandwidth in the elevator control path. The increase
in elevator control bandwidth did not result in significantly higher elevator control
activities to turbulence as seen in table 5.10. This design result illustrates the bene-
fit of control covariance constraints in maintaining a given level of control activities
while control bandwidths are optimized (i.e. increased) for improved damping and
frequency of the longitudinal modes.

Figures 5.15 to 5.18 show the time responses to step commands of the flight-path
angle and velocity variables. Velocity command is developed from an acceleration
command according to equation (4.16). Results associated with the velocity command
are shown in figures 5.17 and 5.18. Both the flight-path angle and velocity commands
are implemented through first-order command shaping filters with bandwidths equal
to those used in the design synthesis (i.e. @ = 1.2 rad/sec for both commands).
Improved damping in the transient responses of flight-path angle and velocity errors
is seen in figures 5.16 and 5.18. Command overshoots in flight-path angle responses
have been nearly eliminated in the SANDY™* design.

Table 5.10 lists the closed-loop rms responses of the optimal and classical designs
to Dryden clear air turbulence at the 99% probability level of intensities. Control rms
responses are constrained with nonlinear inequality bounds on the control covariances.
Results indicate that the optimal design possesses significantly lower throttle activi-
ties. Nearly the same rms turbulence response in the elevator control is maintained
in spite of significantly higher elevator control bandwidth.

Table 5.11 gives values of single-loop type gain and phase margins. Single-loop
stability margins are found to be satisfactory for both the optimal and the classical
gain schedule designs.

Figures 5.19-5.24 show respectively plots of minimum singular values of the return-
difference and the inverse return-difference transfer matrices for the optimal and
classical designs at both the control and sensor paths. Diagonal scaling has been
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used to improve estimates of actual multivariable stability margins. Table 5.12 show
guaranteed stability margins in both the control actuator and sensor paths obtained
according to equations (D.8) and (D.14) in Appendix D. Note that the design robust-
ness was achieved without direct design considerations. As pointed out in section
4.2, H* bounds on appropriate loop transfer matrices can be set up to address design
robustness when such an improvement is needed.

In the next chapters, we discuss the design of an altitude and speed-hold con-
trol system using the TECS controller structure as inner-loop. The objective is to
demonstrate the design features and the usage of nonlinear constrained parameter
optimization in autopilot designs. There are two basic approaches one can adopt in

the autopilot design:

e The outer-loop design can be developed based on an existing (i.e previously
designed) inner-loop TECS controller. This approach is simple and involves
a fewer number of design parameters. But it does not yield the maximally
achievable performance that would be possible if the inner-loop gains are re-
optimized together with the outer-loop control functions. As seen in chapter 6,
this method yields excessive throttle and elevator control activities to altitude

command.

o The outer-loop design is integrated with the synthesis of the inner-loop control-
law. This latter procedure provides a better overall control design as demon-

strated in chapter 7.



Table 5.1: Inner-Loop Feedback Gains (FLT1)

Parameter | SANDY | SANDY* | Classical
Krp 0.09694 0.14189 0.0

Kgp 3.3760 3.4312 3.36
Krr 0.3499 0.3835 0.4

Kg; 2.4037 2.3360 2.52

K, 3.0071 2.9788 4.0

K, 3.1240 3.1184 6.0

k, 0.9194 0.9060 0.8932
ks -0.1633 -0.0950 0.2465

Table 5.2: Closed-Loop System Poles (FLT1)

Design SANDY* Classical
Mode ( | wn (rad/sec) | ¢ wy (rad/sec)
Phugoid mode | 0.7 | 0.81 0.64 | 0.61

Short period | 0.7 | 2.23 . 0.79 | 3.01

Table 5.3: Command and Broken-Loop Control Bandwidths (FLT1)

Command/Control Path | Bandwidths (rad/sec)
SANDY* | Classical
2 0.8 0.7
V. 0.7 0.8
bec 3.1 4.3
bthe 0.37 0.37
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Table 5.4: Closed-Loop RMS Responses to Turbulence (FLT1)

(o = 6.6 fps, a,, = 6.3 fps)

Variable SANDY | SANDY* | Classical
v (deg) 0.9243 | 0.9025 1.0531
V (fps) 0.7915 | 0.7157 0.7157
Naey (8) 0.0805 | 0.0803 0.0800
8. (Ibst/lbsw) | 0.02570 | 0.02605 | 0.02725
8. (deg) 1.3324 | 1.3311 1.3324

Table 5.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY* Classical

Margins Gain Margin | Phase Margin | Gain Margin | Phase Margin
(dB) (deg) (dB) (deg)

Actuator Paths | (—42,+00) —60 (-44,+31) -7

Sensor Paths | (=15,+14) | (—64,462) | (-17,+20) | (-63,+74)

Table 5.6: Guaranteed Multivariable Stability Margins (FLT1)

Design SANDY" Classical
Margins Gain Margin | Phase Margin | Gain Margin | Phase Margin
(dB) (deg) (dB) (deg)
Actuator Paths | (-14.9,+5.2) +50.2 (-14.8,+45.2) +48
(-5.3,+16.4) (-5.1,+14.6)
Sensor Paths (-2.8,+4.2) +22 (-3.3,4+5.4) +27




Table 5.7: Inner-Loop Gain Schedule and Design Parameters

Paramelter FLT! FLT?2
SANDY"* | Classical | SANDY* | Classical

Keas 0.9322 0.9322 0.1950 0.07006

Kew 80,000 80,000 67,328 80,000

k1 0.9060 0.8932 0.9801 0.9717

ky -0.0950 | 0.2465 |-0.3208 | 0.1795

Table 5.8: Closed-Loop System Poles (FLT2)

Design SANDY* Classical
Mode ¢ wp (rad/sec) | ¢ wn (rad/sec)
Phugoid mode | 0.6 |0.64 0.45 | 0.42

Short period | 0.68 | 3.95 0.47 | 3.43

Table 5.9: Command and Broken-Loop Control Bandwidths (FLT?2)

Command/Control Path | Bandwidths (rad/sec)
SANDY* | Classical

Ve 0.65 0.55

V. 0.65 0.63

8e 4.3 2.7

ben 0.29 0.37
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Table 5.10: Closed-Loop RMS Responses to Turbulence (FLT2)

(0, = 4.7 fps, 0, = 4.7 fps)

Variable SANDY* | Classical
v (deg) 0.2095 0.2094
V (fps) 0.1369 0.2060
Nscq (8) 0.0862 0.0805
6 (Ibst/lbsw) | 0.00355 0.004142
b, (deg) 0.2222 0.1667

Table 5.11: Single-Loop Type Stability Margins (FLT?2)

Design SANDY" Classical

Margins Gain Margin | Phase Margin | Gain Margin | Phase Margin
(dB) (deg) (dB) (deg)

Actuator Paths | (=56, +00) —83 (-51, +30) -70

Sensor Paths (—00,21) (—68,+105) (—00,24) (—48,+124)

Table 5.12: Guaranteed Multivariable Stability Margins (FLT?2)

Design SANDY~ Classical
Margins Gain Margin | Phase Margin | Gain Margin | Phase Margin
(dB) (deg) (dB) (deg)
Actuator Paths | (-15,+5.2) +51.6 (—11.24,44.7) +51.2
(=5.4,4+17.8) (=5.4,+17.4)
Sensor Paths (-3.6,6.3) +29.9 (-3.1,5.0) +25.3
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Chapter 6

AIRSPEED AND ALTITUDE-HOLD AUTOPILOT
AROUND AN OPTIMIZED TECS INNER LOOP

In the previous chapter, we have described the use of a total energy concept in
the design of an “inner-loop” for an integrated autothrottle/autopilot control system.
This controller possesses essential and physically intuitive feedback paths to achieve

the following design specifications :

e Stability of closed-loop eigenvalues,
¢ Minimum damping ratio of eigenvalues,
e Acceptable mean square responses of control activities to turbulences,

¢ Command frequency response bandwiths and command tracking performance.

The following study covers the development of autopilot designs for an airspeed-
and altitude-hold system using the TECS control-law as the inner loop. It was
described in chapter 4 that the basic structure of the TECS controller does not include
feedback of airspeed and/or altitude errors. The primary function of the inner-loop
TECS (including the pitch damper) is to provide appropriate tracking bandwidths
in the flight-path and longitudinal acceleration variables along with adequate closed-
loop stability. To ensure that the airplane will indeed provide steady-state tracking
of airspeed and altitude, we need to design an outer-loop that involves feedback
of airspeed and altitude errors as shown in figure 6.1. In this chapter we present
the synthesis of such an autopilot design around the existing optimal TECS inner
loop discussed in chapter 5. In the next chapter 7, our design for the airspeed and
altitude-hold system will also include the design parameters of the inner loop for
improved tracking performance. This latter design approach for an integrated control-
law synthesis covering simultaneously the inner and outer loops is clearly the preferred

approach as indicated by the results of chapter 7.
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In the airspeed-hold design, the airspeed error AV = V() — V.(t) (where V()
is the actual airspeed and V(t) is the commanded airspeed) is fedback through a
feedback gain K, to the acceleration command V. of the TECS “inner loop” as shown
in figure 6.1. While in the altitude-hold design, the altitude error Ah = h(t) — h.(t)
(where h(t) is the actual altitude and h.(t) is the commanded altitude) is fedback
through a feedback gain K, to the flight-path command v.. The outer-loop feedback
gains K, and K, are selected simultaneously from the minimization of the following
performance index,

g = lim 2 [ EIQUV(E) - Vi) + Qu(h(D) = hu(t)))at (6.1)

ty—o0 2

subjected to an additional damping constraint of { > (min. The performance index J|
is evaluated to parameterized random filtered step commands V,(t) = V(1 —e™*")u(t)
and h.(t) = heo(1 — e7*)u(t) where u(t) is the unit-step function. The parameter a
describes the bandwidth of both the airspeed and altitude commands. In this case,
we use a = 1.2rad/sec similar to the bandwidths used for the inner-loop TECS design
described in chapter 5. The variable V., is a random variable with zero mean and
covariance E[V}] = o} = 1.0(fps)?. And the variable A, is a random variable with
zero mean and covariance E[hZ] = o2 = 1.0(f1)%.

Note that if we have only one design parameter, say K, in an airspeed-hold system
or K in an altitude-hold system, then either the gain K, or K}, can be conveniently
designed by simple root locus techniques. In fact, the root-locus method is very useful
even in an optimization-based design setting. It provides us valuable information on
the type of trade-offs occurred in the outer-loop design when the inner-loop is fixed
at an existing controller design. In particular, one can examine by root locus the
degradation of closed-loop damping when we add the outer loop. Root locus plots
are shown in figures 6.2 and 6.3. As we observe from these plots, increasing either K,
or K}, will eventually result in a reduction of the minimum achievable damping in the
closed-loop system eigenvalues. Particularly the gain K, has always a destabilizing
effect. Therefore one can no longer expect to retain the damping achieved by the
inner-loop design when the outer-loop is closed. Trade-off between minimum damping
of the closed-loop eigenvalues and command tracking performance is arrived at by
varying the desired minimum damping (i, and the respective penalty weightings

@: and Q; in the performance index J} of equation (6.1). For example, we have to



reduce (min from 0.7 to 0.6 in order to achieve satisfactory tracking performance. An
outer-loop design is developed for each of the two flight conditions considered in this

study.

6.1 Outer-Loop Design at Flight Condition FLT1

At flight condition FLT1, the performance index J} used in the design of the outer-
loop feedback gains K, and Kj, is given by

Jo= lim 2 [ EI(V() = V) +0.1(h(D) ~ he(0)7) (6.2)
subjected to a damping constraint of ¢ > 0.6. The penalties @, and Q, are deter-
mined after a few design iterations and they are chosen to give comparable tracking
performance between airspeed and altitude commands. For example, if transient re-
sponses in the airspeed error is large then increasing @, in equation 6.1 would improve
the tracking of airspeed command.

The final design gains are shown in Table 6.1. The following analysis have been

carried out on the final design:

e Frequency and damping ratio of closed-loop eigenvalues,
e Time responses to airspeed and altitude commands,

e Command and broken-loop controi bandwidths,

o Closed-loop rms responses to turbulences,

e Single-loop type stability margins,

e Multivariable stability margins.

Notice that the inner-loop gains are fixed at the values obtained in chapter 5 for
the optimal TECS controller at this flight condition. Table 6.2 gives the frequency
and damping ratio of the closed-loop eigenvalues. Notice a slight reduction in the

closed-loop damping as to be expected according to the root-locus plots of figure 6.2.
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However in the next chapter, where the inner-loop gains are redesigned along with
the outer-loop gains in an integrated manner, we are able to increase the damping
back to at least 0.7.

Figure 6.4 shows the command and broken-loop control frequency responses while
table 6.3 summarizes the command and broken-loop control bandwidths. The control-
loop bandwidths are essentially the same as those obtained in the inner-loop design.
However, as expected, the command bandwidths of the outer loop is generally lower

than those of the inner loop.

Table 6.4 gives the rms responses of the closed-loop system to Dryden clear air
turbulence at the 99% probability level of intensities. Results are comparable to those
achieved by the optimized TECS inner-loop design.

Table 6.5 gives the single-loop type gain and phase margins at the actuator and
sensor paths. The corresponding multivariable stability margins are shown in ta-

ble 6.6. All these robustness results are found to be satisfactory.

Figures 6.5 and 6.6 show the time simulation to step commands in altitude of
1000ft and airspeed of 10fps respectively. Note that in both cases the commanded
value has been reached in about 100 seconds. Evaluation of time responses to the
respective commands provide insights into the iterative design procedure since these
responses reflect directly the effects of varying the penalties Q, and Q. It is seen
that comparable performance is achieved between speed and altitude commands. One
advantage of our outer-loop design is that there is small coupling between the speed
and altitude variables. That is, there is little change in altitude when we apply an
airspeed command and vice versa. Both the elevator and throttle control excursions
in the altitude command responses are rather excessive. This is due to the fact that
we have achieved a tight tracking on the altitude response and the outer loop has

been synthesized around an existing (i.e fixed) inner loop.

6.2 OQuter-Loop Design at Flight Condition FLT2

The discussion of the outer-loop design at the cruise condition FLT2 follows an outline
similar to the one presented for the landing approach condition FLT1. At flight con-
dition FLT?2, the performance index J! used in the design of the outer-loop feedback
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gains K, and K, is given by

t
J3 = lim l/ ! E[10(V () = V.(t))* + (h(t) — h(2))?]dt (6.3)
ty—oo 2 Jo
subjected to a damping constraint of ¢ > 0.6.
The final design gains are shown in Table 6.7. The following analysis have also

been carried out on the final design:

¢ Frequency and damping ratio of closed-loop eigenvalues,
o Time responses to airspeed and altitude commands,

e Command and broken-loop control bandwidths,

¢ Closed-loop rms responses to turbulences,

o Single-loop type stability m;rgins,

e Multivariable stability margins.

Notice that the inner-loop gains are fixed at the values obtained in chapter 5 for the
optimal TECS controller at this flight condition. Table 6.8 gives the frequency and
damping ratio of the closed-loop eigenvalues. In this design, we are able to maintain
the same level of closed-loop damping of 0.6 as the inner-loop gain schedule design
at the flight condition FLT2. However, in the chapter 7 where we consider the re-
design of the inner-loop gains together with the outer-loop gains, an improvement in
closed-loop damping of 0.65 can be obtained.

Figure 6.10 shows the command and broken-loop control frequency responses while
table 6.9 summarizes the command and broken-loop control bandwidths. The control-
loop bandwidths are essentially the same as those obtained in the inner-loop design.
However, as expected, the command bandwidths of the outer loop are generally lower
than those of the inner loop.

Table 6.10 gives the rms responses of the closed-loop system to Dryden clear air
turbulence at the 99% probability level of intensities. Results are similar to those
achieved by the TECS inner-loop design.
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Table 6.11 gives the single-loop type gain and phase margins at the actuator and
sensor paths. The corresponding multivariable stability margins are shown in ta-
ble 6.12. All these robustness results are found to be satisfactory.

Figures 6.11 and 6.12 show the time simulation to step commands in altitude of
1000t and airspeed of 10 fps respectively. Note that in both cases the commanded
value has been reached in about 100 seconds. Evaluation of time responses to the
respective commands provide insights into the iterative design procedure since these
responses reflect directly the effects of varying the penalties Q, and Q. It is seen
that comparable performance is achieved between speed and altitude commands. One
advantage of our outer-loop design is that there is small coupling between the speed
and altitude variables. That is, there is little change in altitude when we apply an
airspeed command and vice versa.

In this chapter we have developed a design procedure applied to the synthesis of
an autopilot design using an a-priori designed inner loop. A performance index based
simply on tracking errors to step commands in airspeed and altitude was used. We
are able to achieve good tracking performance and adequate closed-loop damping
requirements. In some situation, it may be required to re-design the inner loop at
the same time one is designing the outer loop in order to accomodate more stringent
requirements in closed-loop damping and control activities to turbulence. The next
chapter, we consider the problem of simultaneous inner and outer loop design in an

airspeed and altitude hold autopilot.



Table 6.1: Outer-Loop Gains with Existing Optimal TECS Design (FLT1)

Parameter SANDY
Krp 0.1419
Kep 3.4312
Kr; 0.3835
Kgg 2.3360

K, 2.9788

Ky 3.1184

Ky -7.5202 x1073
Ky -1.1223 x10-3
Keas 0.9322
Kow 80,000

Table 6.2: Closed-Loop System Poles (FLT1)

Design SANDY
Mode ¢ | wn (rad/sec)
Phugoid mode 0.6 0.43
Short period 0.7 2.23
Altitude Mode 1 0.124
Integral Speed Mode | 0.6 0.37

Table 6.3: Command and Broken-Loop Control Bandwidths (FLT1)

Command/Control Path SANDY
Bandwidths (rad/sec)
he 0.6
|2 0.35
bec 3.19
Othe 0.40
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Table 6.4: Closed-Loop RMS Responses to Turbulence (FLT1)

(0w = 6.6 fps, o, = 6.3 fps)

Variable SANDY
v (deg) 1.2491
V (fps) 0.5487
h (ft) 11.3
Nzcq (8) 0.09335
Oin (Ibst/lbsw) [ 0.03558
6. (deg) 1.6901

Table 6.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY

Margins Gain Margin { Phase Margin
(dB) (deg)

Actuator Paths | (—19.6, 4+00) —42

Sensor Paths (—8.3,+8.6) | (—43,+62)

Table 6.6: Guaranteed Multivariable Stability Margins (FLT1)

Design SANDY
Margins Gain Margin | Phase Margin
(dB) (deg)
Actuator Paths | (—8.5,+4.2) +38.5
(-4.4,+9.3)
Sensor Paths (-2.2,42.9) +16.4




Table 6.7: Outer-Loop Gains with Existing Optimal TECS Design (FLT2)

Parameter SANDY
Krp 0.10895
Kgp 9.8268
Kr; 0.29446
Kgp 6.6903

K, 8.5310

K, 8.9311

Ky -2.1231 x1073
Ky -2.1016 x10~*
Kcas 0.07006
Keow 80,000

Table 6.8: Closed-Loop System Poles (FLT2)

Design SANDY
Mode ( | wn (rad/sec)
Phugoid mode 0.60 0.508
Short period 0.68 3.95
Altitude Mode 1 0.08578
Integral Speed Mode | 0.8 0.26

Table 6.9: Command and Broken-Loop Control Bandwidths (FLT?2)

Command/Control Path SANDY
Bandwidths (rad/sec)
he 0.10
V. 0.30
bec 4.26
bthe 0.29




Table 6.10: Closed-Loop RMS Responses to Turbulence (FLT2)

(o, = 4.7 fps, o, = 4.7 fps)

Variable SANDY
v (deg) 0.2596
V (fps) 0.1438
h (ft) 8.1443
Mo (8) 0.09089
6un (Ibst/lbsw) | 0.004549
b, (deg) 0.2418

Table 6.11: Single-Loop Type Stability Margins (FLT?2)

Design SANDY

Margins Gain Margin | Phase Margin
(dB) (deg)

Actuator Paths | (—16,+00) —58

Sensor Paths (-12,411.4) | (-50,+81)

Table 6.12: Guaranteed Multivariable Stability Margins (FLT?)

Design SANDY
Margins Gain Margin | Phase Margin
(dB) (deg)
Actuator Paths [ (—11, +4.6) +47
(=5.1,+14)
Sensor Paths (-2.6,+3.6) +20
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Chapter 7

SIMULTANEOUS DESIGN OF TECS INNER AND
OUTER LOOPS

In chapter 5 we have described a design procedure for the synthesis of a TECS
controller at two flight conditions FLT1 and FLT2. In these inner-loop designs, con-
troller design parameters were determined so that the closed-loop systems satisfy the
desired stability, bandwidth and turbulence requirements. In chapter 6, an airspeed
and altitude-hold autopilot design was considered using the existing optimized TECS
inner-loop design parameters. In this chapter, we re-examine the autopilot design
from the point of view of improving its performance beyond that achieved by the
outer-loop design of chapter 6.

Some of the areas that one can improve by re-designing the TECS inner loop are:

e Closed-loop damping of system eigenvalues,
® Closed-loop rms responses to turbulence,
e Control activities to commands,

e Design robustness.

The control design structure consists of the TECS control-laws augmented with, in
the outer loop, feedbacks of velocity and altitude errors as shown in figure 6.1. Note
that we adopt the design philosophy that errors in airspeed will be fedback to the
acceleration command V, through a feedback gain K, and altitude errors are corrected
through feedback signals to the flight-path command «, via the gain K. A state-

space representation of this controller is given below:

(o) = 1oe] ()
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where AV = V — V. is the velocity error in fps and Ah = h — h. is the altitude

error in ft. Design parameters in the simultaneous inner and outer loop design are
the proportional and integral gains Krp, K1, Kgp and Kgr, the pitch damper gains
K, and K,, the velocity-error gain K, and the altitude-error gain K. For each
flight condition we will determine a new set of feedback gains, hence without loss of
generality we use the same gain schedule values for Kgw and Kcas in the control-law
synthesis. In fact, their contribution to the overall feedback gains are accounted for
by the other feedback gains.

Following the design procedure described in chapter 4, the objective function for

the airspeed and altitude-hold design consists of the sum of three performance indices

JHk =1,2,3),
3
Jh=3 Jf (7.3)
k=1

C2

1)
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The first performance index Jl(l) is formulated to address design requirements in

airspeed and altitude command tracking performance. It is given by

I = tim 2 [ EQUV(E) - Vi) + Qulh) — h(OPl (14)

t,-‘oo2

This performance index is evaluated to parameterized random filtered step commands
in V; and A, with V,(t) = Veo(1 — €7%)u(t) and R (t) = heo(l — €™%)u(t) where u(t)
is the unit-step function. The parameter a determines the bandwidth of both the
airspeed and the altitude commands. In this design case, we use a = 1.2rad/sec,
the same value as the flight-path and velocity command bandwidths. The variables

Ve and k., are random parameters with zero means and covariances £ [Vci] = Ul2/c =

1.0(fps)? and E[RZ] = o} = 1.0(f1)

Note that this autopilot design formulation includes feedback of velocity error,
hence making the system type 1 in the velocity variable V. In steady-state the aircraft
velocity V() will settle to the command value V.(t) if the feedback gain K, is nonzero
and stabilizing. Similarly, the altitude variable introduce an additional integrator
in the altitude loop hence making it also a type 1 system. The altitude response
will therefore settle to the commanded value if the system has a nonzero stabilizing
feedback gain K. Thus the integrand of the performance index J,(” in equation (7.4)
vanishes in the limit as ¢; — oo.

The second performance index Jlm is set up to perform trade-off in the control
bandwidth of the throttle loop. It is defined as

JB = lim %E[Rléfhc(t P (7.5)
§—0o0

The performance index J@ is evaluated to a high-pass noise input in the thrust
command loop. The noise input is generated from the response of a first-order high-
pass filter to white-noise with zero mean E[64,(t)] = 0 and covariance E[bnu(t +
T)6thu(t)] = 6,,6(7). The quantity Otne(t) is the thrust feedback control as shown in
figure 4.1. Cut-off frequency of the high-pass filter is set approximately equal to the
desired broken-loop throttle control bandwidth (i.e. wg,, = 0.2 rad/sec). Frequency-
shaping of the disturbance input to the thrust command ensures that only control

responses at high frequencies are penalized in Jlm.
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Similarly, the performance index Jl(a) is used to perform trade-off in the control

bandwidth of the elevator loop. It is given by

@ _ o 1
Jl _t/h—l:nooQ

E[Rybe ()] (7.6)

In this case, Jl(a) 1s evaluated to a high-pass noise input in the elevator command loop.
Again the noise input is obtained from the response of a first-order high-pass filter
to white-noise with zero mean E[6.,(t)] = 0 and covariance E[6,,(t + 7)., (t)] =
02,6(7). The quantity 6..(t) is the elevator feedback control. Cut-off frequency of
the high-pass filter is approximately equal to the desired broken-loop elevator control
bandwidth (i.e. ws,, = 2.0 rad/sec at flight condition FLT1 and w;,, = 0.1 rad/sec at
flight condition FLT2). The lower bandwidth selected at the cruise condition FLT2
ensures that the elevator control bandwidth is of the same size as previous inner-loop

design.

Other design considerations besides those depicted in the quadratic performance
indices Jl(l), Jlm, and Jl(a) are defined as before with the use of direct constraints.
For example, desired closed-loop damping is achieved using the eigenvalue constraint
defined in equation (C.41). Nonlinear damping constraints provide a direct means to
achieve satisfactory damping of aircraft rigid-body modes. And covariance responses
of selected outputs to clear air turbulence of Dryden spectra with RMS intensitics
from the 99% probability level (figure 4.2) can be bounded using the covariance
inequality constraint in equation (3.11). Nonlinear covariance constraints on control
outputs ensure that the resulting optimal design has reasonable control activities to

turbulence.

In this design case, selection of initial guess for the design parameters and the
penalty weighting matrices is facilitated by the results obtained in chapter 5 for
the TECS inner-loop designs. All design gains were initially selected to be those
determined in chapters 5 and 6 since these solutions have shown to provide reasonable
stabilizing designs. Weighting matrices are also initially chosen to be those used in
the previous design cases. Starting from these, one can iterate until a satisfactory

autopilot design is attained.
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7.1 Simultaneous Design of TECS Inner and Outer Loops at Flight Condition FLT1
For the landing approach condition FLT1, the following design objectives were used:

* The performance indices J;(i = 1, 3) described in equations (7.4), (7.5) and (7.6)
are given below.
(a) Command frequency response bandwidths and command tracking perfor-
mance:

o = lim = [7 EROV(D) = Vi) + (h(®) - k)t (77)

!/-ooo

This performance index is evaluated to parameterized random filtered step com-
mands in V. and k. with V,(t) = V,,(1 — e~*)u(t) and he(t) = hoo(1 — e ) u(t)
where 4(t) is the unit-step function. The parameter a determines the band-
width of both the airspeed and the altitude commands. In this design case, we
use a = 1.2rad/sec, the same value as the flight-path and velocity command
bandwidths. The variables V., and k., are random parameters with zero means
and covariances E[V?2] = o} = 1.0(fps)? and E[h%] = or = 1.0(ft)%
(b) Broken-loop crossover frequency in the throttle control loop:

I = lim = E(108,(t)) (7.8)
The performance index J,m is evaluated to a high-pass noise input in the thrust
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean Eléw(t)] = 0 and covariance
Ebthw (t+7)8hw(t)] = 02,,6(7). In this design, we choose 04, = 1. The quantity
6enc(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop throttle
control bandwidth (i.e. ws,,, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:
1
JY = lim S EBE(t)) (7.9)
g0

The performance index J,(B) is evaluated to a high-pass noise input in the elevator
command loop. The noise input is generated from the response of a first-order
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high-pass filter to white-noise with zero mean E[6.,(t)] = 0 and covariance
Elbey(t+7)6ew(t)] = 02,6(7). In this design, we choose 0., = 0.16 . The quantity
bec(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop elevator
control bandwidth (i.e. ws,, = 2.0 rad/sec).

e Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,
0:<0(1=1,n) (7.10)
(b) Damping ratio of the eigenvalues must be greater than 0.7, i.e

¢ >07(G=1,n) (7.11)

e Mean square responses of control activities to clear air Dryden turbulence of

o, =6.6fps and o, = 6.3fps,
E[63.] < 7.56 x 1074(Ibst /Ibsw)? (7.12)
E[6%) < 6.735 x 107*(rad)? (7.13)

The resulting set of optimal feedback gains is shown in table 7.1. Overall these gains
differ significantly from those where the inner and outer loops are designed separately.
Improved performance and damping are achieved with higher values of K7p, K, K;
and K,. Table 7.2 gives the damping ratio and natural frequency of the closed-
loop system eigenvalues. A minimum damping of 0.7 is achieved through the use of
nonlinear constraints; this is an improvement over the minimum damping of 0.60 in
the optimal outer-loop design in chapter 6.

Figures 7.1 shows the command and broken-loop control frequency responses of the
optimized design. Command and control-loop bandwidths for these designs are sum-
marized in table 7.3. Note that the design has slightly higher command bandwidth
in the velocity variable than the outer-loop design in chapter 6, while the altitude

command bandwidth is significantly reduced. This is primarily due to the fact that
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we have limited the control activities to the values defined by the classical TECS
design described in chapter 5 and we are imposing a higher damping requirement.
Control-loop bandwidths are similar in the two designs.

Figures 7.2 and 7.3 show time responses of the closed-loop systems to a step com-
mand in altitude of 1000f¢ and in airspeed of 10fps respectively. Control activities
are less than half of those shown in table 6.5 for the previous outer-loop design. Ta-
ble 7.4 summarizes the closed-loop rms responses to Dryden clear air turbulence at
the 99% probability level of intensities. Results clearly illustrate the effective usage
of direct bounds on the respective output covariances. By imposing inequality con-
straints on the control covariances, one is guaranteed at the outset that the optimal
design, when converged, will have the same or lower control activities than the clas-
sical design. Furthermore, covariance responses of other aircraft variables are lower
or equal to those of the classical design shown in table 5.4.

Table 7.5 summarizes values of single-loop stability margins. Single-loop stability
margins are found to be satisfactory and improved over those in table 6.5 of the
previously optimized outer-loop design.

Figures 7.4-7.6 show plots of minimum singular values of the return-difference and
the inverse-return-difference transfer matrices respectively at both the control and
sensor paths. In these plots, diagonal scaling on the transfer function matrices has
been used to reduce conservatism and thereby improve estimates of actual multiloop
stability margins. Table 7.6 gives guaranteed multivariable stability margins in both
the control actuator and sensor paths according to equations (D.8) and (D.14) of
Appendix D. Again these results are better than those in table 6.6 for the optimized

outer-loop design of chapter 6.

7.2 Simultaneous Design of TECS Inner and Outer Loops at Flight Condition FLT2

Instead of performing a simple gain schedule design based on the results obtained in
the previous section 7.1 for the landing approach condition, we choose to re-design
all the TECS inner and outer-loop gains at the cruise condition FLT2. The objective
is to see whether one can improve the design performance beyond those achieved in
chapter 5 and 6 combined. Another set of design objectives are established for the

cruise condition similar in form to that given in equations (7.7)-(7.13). They are as
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follows,

¢ The performance indices Ji(i = 1, 3) described in equations (7.4), (7.5) and (7.6)
are given below.
(a) Command frequency response bandwidths and command tracking perfor-
mance:

JD = fim % / Y EIB(V{) = V(t))? + 2(h(2) — ho(0)))de (7.14)

ty—o0

This performance index is evaluated to parameterized random filtered step com-
mands in V. and &, with V,(¢) = V,,(1 - e™*)u(t) and ho(t) = heo(1 —e™2)u(t)
where 4(t) is the unit-step function. The parameter a determines the band-
width of both the airspeed and the altitude commands. In this design case, we
use a = l.2rad/sec, the same value as the flight-path and velocity command
bandwidths. The variables V,, and hc, are random parameters with zero means
and covariances E[V2] = o} = 1.0(fps)? and E[h?] = of = 1.0(ft)%

(b) Broken-loop crossover frequency in the throttle control loop:
(2) .1 2
Jl = tl]m 5E[0.036'hc(tf)] (7.15)
g

The performance index Jlm is evaluated to a high-pass noise input in the thrust
command loop. The noise input is generated from the response of a first-order
high-pass filter to white-noise with zero mean El[64w(t)] = 0 and covariance
E[&,hw(t-i-r)&thw(t)] =02 6(7). In this design, we choose o4, = 1. The quantity
btnc(t) is the thrust feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop throttle
control bandwidth (i.e. ws,, = 0.2 rad/sec).

(c) Broken-loop crossover frequency in the elevator control loop:

.1

J = lim 5 E[10082(t,)] (7.16)
g=+00

The performance index J1(3) is evaluated to a high-pass noise input in the elevator

command loop. The noise input is generated from the response of a first-order

high-pass filter to white-noise with zero mean Elb.,(t)] = 0 and covariance
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E[bew(t +7)6ew(t)] = 02,6(7). In this design, we choose 0., = 1.0 . The quantity
bec(t) is the elevator feedback control as shown in figure 4.1 . Cut-off frequency of
the high-pass filter is set approximately equal to the desired broken-loop elevator

control bandwidth (i.e. ws,, = 0.1 rad/sec).

o Stability of the closed-loop eigenvalues:

(a) Real part of the eigenvalues must be less than zero,
0; <0 (:=1,n) (7.17)
(b) Damping ratio of the eigenvalues must be greater than 0.65, i.e
(i >0.65 (i = 1,n) (7.18)

Note that no feasible solutions can be found that will satisfy damping require-
ment exceeding 0.65 and at the same time maintaining the covariance responses

achieved under the classical design (Table 5.10).

® Mean square responses of control activities to clear air Dryden turbulence of
oy =4.7fps and o, = 4.7 fps,
We are restricting our design to provide the same levels of covariance responses

as the classical design shown in table 5.10.

E[6%,.] < 0.18037 x 10™*(Ibst/lbsw)? (7.19)
E[§2] < 0.17581 x 10~*(rad)? (7.20)
E[V?] £0.0424(fps)* (7.21)
E[n?,,] < 0.648 x 107%(g)* (7.22)

The set of optimized feedback gains is shown in table 7.7. These gains differ signif-
icantly from those shown in table 6.7 where the inner and outer loops are designed
separately. Table 7.8 gives the damping ratio and natural frequency of the closed-
loop system eigenvalues. A minimum damping of 0.65 is achieved through the use of
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nonlinear constraints; this is an improvement over the minimum damping of 0.60 in
the optimal outer-loop design in chapter 6.

Figures 7.7 shows the command and broken-loop control frequency responses of
the optimized design. Command and control-loop bandwidths for these designs are
summarized in table 7.9. Note that the design has equal bandwidth in both the
airspeed and altitude paths. The command bandwidth in the velocity variable is
slightly less than the one of the outer-loop design in chapter 6, while the altitude
command bandwidth is improved. Control-loop bandwidths are similar in the two
designs.

Figures 7.8 and 7.9 show time responses of the closed-loop systems to a step
command in altitude of 1000f¢ and in airspeed of 10 fps respectively. Both command
responses have almost the same time constant confirming the results of table 7.9.

Table 7.10 summarizes the closed-loop rms responses to Dryden clear air turbu-
lence at the 99% probability level of intensities. Results clearly illustrate the effective
usage of direct bounds on the respective output covariances. By imposing inequality
constraints on the control and output covariances, one is guaranteed at the outset
that the optimal design, when converged, will have the same or lower control and
output covariances than those of the classical design in table 5.4.

Table 7.11 summarizes values of single-loop stability margins. Single-loop stability
margins are found to be satisfactory and similar to those in table 6.11 of the previously
optimized outer-loop design.

Figures 7.10-7.12 show plots of minimum singular values of the return-difference
and the inverse-return-difference transfer matrices respectively at both the control and
sensor paths. In these plots, diagonal scaling on the transfer function matrices has
been used to reduce conservatism and thereby improve estimates of actual multiloop
stability margins. Table 7.12 gives guaranteed multivariable stability margins in
both the control actuator and sensor paths according to equations (D.8) and (D.14)
of Appendix D. Again these results are comparable to those in table 6.12 for the
optimized outer-loop design of chapter 6.

From the above results, one can deduce that to maximize tracking performance
along with other requirements such as closed-loop damping, covariance responses to
turbulence in an autopilot design problem, it is often necessary to re-examine the

inner-loop design gains in conjunction with the outer-loop gains. We have demon-
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strate in this chapter the usage of constrained nonlinear optimization in the synthesis
of an airspeed and altitude-hold autopilot. Here the inner and outer-loop gains are
optimized simultaneously to yield an overall improved design over those presented in

chapters 5 and 6.



Table 7.1: Optimal Inner- and Outer-Loop Feedback Gains (FLT1)

Parameter SANDY
Krp 0.56168
Kgp 3.2326
Kry 0.33981
Kgyp 2.2854
K, 3.2620
K, 5.0000
Kv -0.010517
K, -2.3882 x10~4
Kcas 0.9322
Kew 80,000

Table 7.2: Closed-Loop System Poles (FLT1)

Design SANDY
Mode ¢ | wn (rad/sec)
Phugoid mode 0.8 0.58
Short period 0.74 3.13
Altitude Mode 1 0.065
Integral Speed Mode | 1 0.125

Table 7.3: Command and Broken-Loop Control Bandwidths (FLT1)

Command/Control Path SANDY
Bandwidths (rad/sec)
he 0.06
v, 0.42
boc 3.67
Sthe 0.40




Table 7.4: Closed-Loop RMS Responses to Turbulence (FLT1)

(oy = 6.6 fps, o, = 6.3 fps)

Variable SANDY
v (deg) 0.9538
V (fps) 0.4755
h (ft) 13.1
Moo (8) 0.07585
b (Ibst/lbsw) [ 0.02718
8. (deg) 1.2982

Table 7.5: Single-Loop Type Stability Margins (FLT1)

Design SANDY

Margins Gain Margin | Phase Margin
(dB) (deg)

Actuator Paths | (=35, +o0) =57

Sensor Paths (—19,+14.5) | (-55,+70)

Table 7.6: Guaranteed Multivariable Stability Margins (FLT1)

Design SANDY
Margins Gain Margin | Phase Margin
(dB) (deg)
Actuator Paths | (—14,+5.1) +47.9
(—5.2,+14.5)
Sensor Paths (—2.7,+3.95) +21




Table 7.7: Optimal Inner- and Outer-Loop Feedback Gains (FLT?2)

Parameter SANDY
Krp 0.3965
Kgp 6.549
Kr; 0.27233
Kg; 1.5469

K, 5.3573

Ky -0.09335
Ky -3.593 x10-3
Ky -1.2038 x10-*
Keoas 0.07006
Kew 80,000

Table 7.8: Closed-Loop System Poles (FLT2)

Design SANDY
Mode ¢ | wn (rad/sec)
Phugoid mode 0.65 0.28
Short period 0.65 3.27
Altitude Mode 1 0.165
Integral Speed Mode | 0.65 0.16

Table 7.9: Command and Broken-Loop Control Bandwidths (FLT2)

Command/Control Path SANDY
Bandwidths (rad/sec)
h. 0.20
V. 0.20
dec 4.0
Othe 0.27
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Table 7.10: Closed-Loop RMS Responses to Turbulence (FLT2)

(0. = 4.7 {ps, o, = 4.7 fps)

Variable SANDY
v (deg) 0.1562
V (fps) 0.2059
h (ft) 5.5316
Mg (8) 0.08050
6t (Ibst/lbsw) | 0.003878
b, (deg) 0.1388

Table 7.11: Single-Loop Type Stability Margins (FLT?2)

Design SANDY

Margins Gain Margin | Phase Margin
(dB) (deg)

Actuator Paths | (—17,+00) —68

Sensor Paths (—8.6,+12.7) | (-=50,+73)

Table 7.12: Guaranteed Multivariable Stability Margins (FLT2)

Design SANDY
Margins Gain Margin | Phase Margin
(dB) (deg)
Actuator Paths | (—11,+4.7) +55
(—5.7,422)
Sensor Paths (—2.9,+4.42) +23
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Chapter 8
CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Traditionally, classical methods for control system design via successive single loop
closure using root locus or Bode diagrams have been applied to the synthesis of
feedback controllers for multiloop systems. Such designs often lack performance and
robustness to uncertainties in the plant model. Automatic flight control systems
(AFCS) on commercial aircraft are a prime example. Current AFCS design based
on the single loop approach is evident in the architecture of the autothrottle and
autopilot control systems. The autopilot is designed to regulate altitude through
feedback to the elevator control surfaces while the autothrottle separately controls
speed through feedback to the engines.

The basic problem with classical design procedures is that they usually overlook
the multiloop aspects of the system dynamics, neglecting significant cross-coupling
among different feedback control systems. In the case of the AFCS, flight path and
speed errors are produced by both the throttle and elevator controls such that closure
of both the autothrottle and autopilot control loops may be destabilizing. Further-
more, classical design procedures applied‘to multiloop controllers yield little insight
into the problem of design tradeoff between performance and robustness to modeling
uncertainties. Obtaining a satisfactory design with classical procedures is far from
straightforward, and can be quite time consuming if previous design experiences are
lacking. What is needed is a multivariable design procedure that directly incorporates
design objectives in terms of closed-loop stability, performance, and robustness into
the design tradeoff.

Development in multivariable design techniques have concentrated on improving
controller performance and robustness to modeling uncertainties. Modern control
design methods such as LQG, H*®, and p-synthesis allow designers to synthesize

controllers that meet different measures of performance and robustness. Controller
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designs obtained with modern techniques are usually of high order (i.e. the order
of the controller is greater than or equal to the order of the plant model). Conse-
quently, controller model reduction must be considered for practical implementation.
Furthermore, design tradeoff between many real design goals (i.e. damping of system
poles, disturbance rejection, command tracking, etc. ), while easier than with classical
procedures, is still far from simple.

In this study, the design method SANDY for robust controller design described in
reference 6 is successfully applied to the design of an integrated autothrottle/autopilot
control system. A complete design procedure encompassing key concerns such as
closed-loop stability, control and command bandwidths, limited control activities to
disturbance and command tracking performance has been developed for the synthesis
of an integrated autothrottle/autopilot design based on the TECS concept. The
usefulness of the procedure has been extensively demonstrated in actual design of an
airspeed and altitude-hold system for a TSRV vehicle at two typical flight conditions.
It should be noted that the constrained parameter optimization method implemented
in the computer software SANDY has found wide application in aircraft flight controls
and control of flexible mechanical systems, and provides a systematic approach for
incorporating many real design objectives into the design tradeoff. Design goals
such as damping of system modes, disturbance rejection, and command tracking
are directly included into the design procedure. Direct tradeoffs are found to be
systematic, and satisfactory designs are obtained with few iterations.

The philosophy of total energy control (TECS) enables us to define a multiloop
AFCS feedback control structure. Previous TECS designs use classical methods for
obtaining the controller feedback gains and gain schedule. Results in this research
demonstrate the application of the SANDY design algorithm to a practical flight
control problem; design of an integrated autothrottle/autopilot control system. The
procedure allows designers to address a number of objectives such as stability, distur-
bance rejection and command tracking. Robustness to plant modeling uncertainties
are maintained in the optimal design as compared with previous designs.

Contributions of this research are in the following areas:

¢ Formulation of performance indices for trade-offs in command and control band-
widths.
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e Innovative formulation of the nonlinear constraints for the closed-loop system

eigenvalues.

* Definition of a design variable V*(t) in terms of linear combinations of flight-
path angle and velocity commands, and appropriate constraints on the design
parameters to synthesize different levels of decoupling between the flight path
command and velocity errors. This approach has a broad implication in the area
of output decoupling control where cross-coupling between command paths can

be systematically formulated.

e Development of systematic design procedure for the TECS control laws with
clearly defined design trade-offs using multiple performance indices, direct bound
constraints, constraints on closed-loop stability and gain schedule across different

flight condition.

e Development of an integrated “inner loop” and “outer loop” design procedure
for the TECS control-laws.

8.2 Recommendations for Future Research
Areas for future investigation include,

» Examination of sensor implementation issues such as filtering of signals and

estimation.

» Extension of design procedures to directly include robustness measures into the

design tradeoff.

e Application of the design procedure to ﬂexib]e—Body aircraft with low structural
damping.

In this study, we have chosen to ignore the issue of sensor implementation for
feedback of acceleration, flight path angle, and pitch damping variables. In practice,
filtering of sensor signals is usually required. In fact, present TECS designs have
included complementary filters for estimation of certain feedback quantities. The
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design procedure developed in this investigation may be used to simultaneously design
the feedback controller and the associated filter/estimator for the feedback sensors.
Dynamic models of sensor signal conditioning can be incorporated into the synthesis
model. The sensor filter/estimator parameters are then optimized along with gain
parameters in the feedback controller.

The design procedure outlined in this research allows for the direct tradeoff be-
tween controller design goals of stability, performance, and robustness to modeling
uncertainties. However, application of methods for incorporating robustness measures
into the controller design procedure have not been extensively investigated. These
techniques consist of including additional plant models for off-nominal conditions into
the design procedure, and specification of H*® bounds on outputs of selected system
transfer matrices for unstructured plant uncertainties.

A useful extension of this research would be to investigate the design tradeoff with
robustness to modeling uncertainties. Available techniques for analysis of structured
singular values could be used in defining “worst-case” design conditions for inclusion
as off-nominal plant models into the design procedure, as discussed in section 4.3. Fur-
thermore, methods for improving multivariable stability margins through H* bounds
on selected system transfer matrices could be explored.

The design procedure developed in this research is well suited to the synthesis of
controllers for flexible mechanical systems. An interesting application of this proce-
dure would be to the design of an AFCS for a highly flexible aircraft, such as for
modal suppression, gust alleviation, and ride quality control. Nonlincar inequality
constraints for damping of system eigenvé,lues would be useful for ensuring minimal
damping in the flexible-body modes. Numerical algorithms need to be extended to

handle systems with repeated eigenvalues that are not diagonalizable.
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Appendix A

EVALUATION OF A QUADRATIC PERFORMANCE
INDEX TO RANDOM INITIAL CONDITIONS AND
IMPULSE INPUTS

The finite-time performance index in equation (3.6) evaluated to random initial

conditions or impulse inputs can be evaluated as in equation (3.7) for white-noise in-

puts when certain conditions are met. This equivalence is established in the following

sections.

A.l Random Initial Conditions

The closed-loop system associated with each plant condition has the following form

(1)

where the initial conditions z’(0) are

Elz,] = 0 and covariance E[z/z7] =

~ A1) (A.1)
= Ciz'(t) (A.2)
= 7 (A.3)

gaussian random variables with zero mean

X!, The feedback control inputs can also

be expressed in terms of the states of the closed-loop system as

up(t) = ye(t) = Cea'(t) (A.4)

The performance index evaluated to random initial conditions is

Ji(ty) = %/0" e’“‘E[yf(t)Qy,,(t) + uf(t)Ru,,(t)]dt (A.5)

Using equations (A.2) and (A.4), the performance index J,(¢;) becomes

T(t) = ~tr {(crac,+crrey [ v = Bl (1) (1)) dt (A.6)

2
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Solution of the closed-loop system responses to initial conditions is simply

z'(t) = etz (A7)

o

Combining equations (A.6) and (A.7) yields
1 Y (A'+a)Tt( T / C,TRC' (A’+aI)td X! A8
Rts) = gtr{ [ W +=DT(CTQC, + CTRCYE et X} (A8)

The feedback controller must provide an asymptotically stable closed-loop system

so that the limit in equation (A.8) exists and is finite.

A.2 White-Noise Inputs

For random white-noise inputs, we consider the following closed-loop system

'(t) = A'Z'(t)+Tw(t) (A.9)
yp(t) = C,’,x'(t) (A.10)
Z'(0) = 0 (A.11)

where the disturbance inputs w(t) are gaussian random processes with zero mean
Elw(t)] = 0 and covariance E[w(t)w(r)T] = W,é(t — ). The feedback control inputs

can be written as

up(t) = ye(t) = Cez'(t) (A.12)

The finite-time performance index to random disturbance inputs is

Tity) = 5 Baly (t)Qualts) + w2 (1)) Ry (1) (A13)

where E,[-] is the expectation operator for a closed-loop system destabilized by a
factor a.
Substituting equations (A.10) and (A.12) into the expression for J;(t;), we obtain

after some manipulations

Ji(t)) = %tr {(CFQC, + CTRCYEalz'(t))=(t))]} (A.14)



116

where the time response z'(t) is given by
2(t) = /0 AN D) dr (A.15)
The performance index J,(t;) becomes
RBity) = tr{(CFQC, +CIRC) (A.16)
/OU /Otl e(A’+“I)(‘f—’)F'E[w(T)wT(s)]I"Te(A'*'"”T('f")d'rds}
Recalling that E[w(r)w(s)T] = W,8(r —s), and with some rearranging J,(t;) becomes

t
J(ty) = %tr{/ " eAralTity-m) (A.1T)
0
(CFQC, + CTRCL)eA+eN =" dr "W, [T}
If we perform a change of variable ¢ = ty — 7, then
t !
L(ty) = %Trace{/ " tanTe (A.18)
0

(CTQC, + CTRC) A+ D" W, I}

Therefore it can be seen from equations (A.8) and (A.18) that if
r'w,rt = x! (A.19)

then Jy(t;) = Ja(t;). With this equivalence established, the problem associated with
random initial conditions can be formulated as the one corresponding to random

white-noise inputs.

A.3 Parameterized Random Impulse Inputs

For random impulse inputs, the closed-loop system has the following form

'ty = A'Z'(t)+ B'w(t) (A.20)
wlt) = Cz'(1) (A21)
2(0) = 0 (A.22)
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where the inputs w(t) are parameterized random impulses w(t) = yomq(t) with
amplitude vector y.n4 being random with zero mean Elyema) = 0 and covariance

E[yomayZ 4] = Yema. The feedback control inputs can be written as
up(t) = (1) = CL'(1) (A.23)

The finite-time performance index to random impulse inputs is

Ja(ty) = %/Ot' e ElyT (1)Qy,(t) + ul (1) Ru,(t))dt (A.24)

Substituting equations (A.21) and (A.23) into the expression for J3(ts), we obtain

after some manipulations

1

' ’ tr o ' ' .
Ja(ty) = atr {(C;TQCP + CC/TRCC)/O e E['(t)x T(t)]dt} (A.25)
where the time response z'(t) is given by the time-convolution integral as
‘ !
z'(t) :/ eA+aD(t=") By () dr (A.26)
)
and since w(7) = y.m48(7), we have
l"(t) = e(A'+al)tB’ycmd (AQT)
The performance index J3(t;) becomes
1 t/ ’ T
- - (A'+al)Tt A28
hity) = gir{[”e (A.25)

(CTQC, + CTRCY)e A+ MGt E[B'y gy . BT])

Recalling that E[yomnayl ;] = Yana, we have

1 t ’ r ’
h(ty) = gtr { /0 "Wl TG | O ROY Aty chdB’T}(A.QQ)

It can be seen from equations (A.18) and (A.29) that if
F’WOF’T = B,Y::mdB’T (A30)

then we have J3(t;) = Jy(t;). Thus, the problem associated with parameterized
random impulse inputs can also be formulated as one corresponding to white-noise

inputs if we use the equivalence relation of (A.30).



Appendix B

CONTROLLER DESIGN FOR COMMAND TRACKING
AND DISTURBANCE REJECTION

Two common classes of control designs to external inputs are: command tracking
or model-following and disturbance rejection. Control-law synthesis for these design
problems can be formulated in terms of the minimization of a quadratic performance
index of the form

Jo= lim [ ET(0)Qu.(t) +uT (t) Rul(t)]dt (B.1)

ty—oo Jo

The quadratic performance index J contains penalties on transient responses of
the closed-loop system to random commands and/or disturbances. For command

tracking, the variables y,(t) and u(t) in equation (B.1) are the tracking errors defined

by

vlt) = (1) = ym(?) (B.2)
ult) = uplt) - temalt) (B.3)

where y () are the outputs of a command generator model and Uema(t) are the con-
trol inputs that produce zero tracking errors in y(t) at steady state. In order to
ensure that the performance index in equation (B.1) be bounded, all the penalized
variables in y,(¢) and u,(t) corresponding to the nonzero weighting matrices Q and R
must converge asymptotically to zero as t — oo. For example, in the case of output
commands y,,,(¢) having nonzero constant steady-state values (i.e yn.(t) = Yemdo 1(1)
where p(t) is the unit-step), it can be shown through the set point calculations (sec-
tion B.3) that the required controls u.ms(t) at steady state are linear functions of
Yemdo-

For the problem of disturbance rejection, the tracking errors y.(t) and u,(t) in
equation (B.1) are defined as

y(t) = yp(t)_ypu(t) (B.4)
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uC(t) = uP(t)—uPu(t) (}35)

where y,,,(t) are the desired output responses while u,,,(t) are the necessary control
inputs to maintain the desired outputs y,,,(t) in the presence of disturbances w(t).
The relationships between u,,,(t), y,,,(t) and the disturbances w(t) are derived in
section B.4.

Command outputs y,,(t) and disturbance outputs w(t) in the form of impulses,
steps, ramps or a combination of these can be derived from linear time-invariant
models with appropriately choosen initial conditions and impulse inputs. Details are

given in sections B.1 and B.2.

B.1 Models for Parameterized Random Commands

Commands y,,(t) in the form of impulses, steps or ramps can be generated using a

linear time-invariant model of the form,

Em(t) = AnZm(t) + Bnyema(l) (B.6)
ym(t) = CanZm(t) + Dmyema(t) (B.7)

with 2,(0) = Tm, and yema(t) = Yoma, 6(t). The quantities Tmes Yemd, along with the
state matrices Ay, B, Cr, and D,, define the desired outputs y,,(t).

For example, a command vector of impulses can be created using

Ym(l) = ycmdo‘s(t) (B-S)

where the state vector z,,(t) is of zero dimension and the matrix D,, = I. The
impulse magnitude ycmq, is a vector of gaussian random parameters with zero mean
Elyemao] = 0 and covariance E[yemdy¥imay) = Yemdo-

On the other hand, a vector of step commands can be obtained from

i'm(t) = (O)xm(t)+ycmd05(t) (Bg)
ym(t) = zm(t) (B.10)
za(0) = 0 (B.11)
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yielding a step command vector ym(t) = yomaop(t) where p(t) is a unit-step function
and Y.mq4, is @ vector of gaussian random parameters with zero mean Ely.mq,] = 0
and covariance E[Yemdo¥lnq,] = Yemdo-

An alternate formulation for the vector of step commands is

in(t) = (0)zn(1) (B.12)
Ym(t) = zm(t) (B.13)
r,(0) = Tom, (B.14)

In this case, the resulting step command is y,n(t) = Tpmou(t) where Im, iS a vector of
T

gaussian random parameters with zero mean E[z,] = 0 and covariance Elzm,zy,

Xong -

Filtering of command outputs can be done by introducing additional dynamics
into the command generator model described in equations (B.6)-(B.7). The choice of
the state matrices A,,, B;,,C,, and D,, will completely define the command signals
ym(t). For example, if the system matrix A,, has a pair of eigenvalues at A = +jwyq
(i.e on the imaginary axis), then the outputs y,(t) will have components of sinusoidal
functions of frequency wo. Figures (B.1) and (B.2) show time responses of a stable

first-order filter to a scalar impulse command and a step command respectively.

B.2 Models for Parameterized Random Disturbances

In a similar manner, external random disturbances w(t) in the form impulses, steps

and ramps can be generated using a linear time-invariant model of the form,

i‘d(t) = Adl‘d(t)-f-Bdwd(t) (B15)
w(t) = Cuza(t) + Dawal?) (B.16)

with 4(0) = z4, and wy(t) = woé(t). The quantities z4,, wo along with the state
matrices A4, By, Cy and D, are parameters that define the disturbances w(t).

For example, a disturbance vector of impulses can be created using

w(t) = wob(?) (B.17)
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where the state vector z4(t) is of zero-dimension and the matrix Dy = I. The
amplitude wp is a vector of gaussian random parameters with zero mean E[w,] = 0
and covariance E[wowl] = W,,. '

On the other hand, a vector of constant disturbances can be obtained from

z4(t) = (0)zq4(t) + wod(?) (B.18)
w(t) = z4(t) (B.19)
z4(0) = 0 (B.20)

yielding a disturbance vector w(t) = wou(t) where wy is a vector of gaussian random
parameters with zero mean Efwo] = 0 and covariance E[wowd| = W.
Note that an alternate formulation for the vector of constant disturbances can be

done using random initial conditions as described below,

z4(t) = (0)z4(t) (B.21)
w(t) = z4(1) (B.22)
4(0) = x4, (B.23)

In this case, the resulting step disturbance vector is w(t) = zq,u(t) where z4, is a
vector of gaussian random parameters with zero mean E[z4] = 0 and covariance
Elz41]] = Xg.

Other parameterized random disturbance functions can be produced, similarly to
the command generator models of section.B.1, by introducing additional linear filtcrs
into the disturbance model of equations (B.15)-(B.16).

Random stochastic processes can also be modeled using equations (B.15)-(B.16)
where, in this case, the disturbance inputs w4(t) are white-noises with zero mean
Efwqy(t)] = 0 and covariance Efwq(t)w](1)] = Wob(t — 7). Outputs w(t) of the dis-
turbance model are depicted as colored noises having power spectral characteristics
defined by the disturbance state matrices A4, By, Cy and Dy.

B.3 Steady-State Responses to Command Inputs

Command tracking and model-following designs involve the formulation of a perfor-

mance index that contains tracking errors y,(t) = y,(¢) — ¥ (t) and control feedback



errors u.(t) = up(t) — uema(t) as depicted in equation (B.1). These error variables
can always be written as outputs of a closed-loop system. The quantities y,,(¢) are
commanded outputs while u4(t) are the control inputs used to maintain zero steady-
state tracking errors in y.(t). We would like to establish the necessary relationships
between the commanded outputs ym(¢) and the control inputs u.ma(t).

Let’s consider a linear time-invariant plant model with control inputs u,(t) and

outputs y,(t),

T,(t) = Apzp(t) + Bpuy(l) (B.24)
yp(t) = Cpzy(t) + Dpuy(t) (B.25)

In the following derivation, we restrict ourselves to the case where the commanded
outputs ym(¢) have only constant steady-state components; that is, we exclude any
commanded outputs that are sinusoidal or grow unbounded with time such as ramp
functions. This assumption enables us to treat this problem as one corresponding to
the calculation of setpoints. Steady-state system responses are determined by letting
Zp(t) = 0, up(t) — ucma(t) and y,(t) — yn(¢) in the limit as ¢ — oo. Dimension of

Yp(t) (and thus y(t)) must be equal to the dimension of u,(t) so that we have

( Ip(t) ) AP BP i ( 0 ) (BQG)
up(t) o8 Cy Dy yp(t) a5
( Zp, (1) ) Ay By ( 0 ) (B.27)
Ucmd(t) Co Dy ym (1)

where the notation (-),, denotes the quasi-steady values. We should emphasize
that these relationships are correct only when the steady-state conditions have been
reached. Nonetheless one can use relations in equation (B.27) to express the desired
states and control command inputs as a function of the commanded outputs y,(t)
for all time ¢t > 0. The control command inputs u.mq(t) and the state vector z,,,(t)
are therefore functions of time since the commands y,,(¢) may be time-varying, and
they will settle to constant values as ¢ — oo. Note that the system matrix formed
by the quadruple A,, B,, C, and D, in equation (B.27) is square and it must also



be invertible for the setpoint calculation. The quantities y,(t) are outputs of a com-
mand generator model and the values z,,,(t) and u.mq4(t) are computed according to
equation (B.27).

Let’s denote the inverse of the system matrix as

o [K M] (B.28)

A, B,
L N

¢, D,

where the matrix partitions K through N have the same dimensions as their coun-
terparts A, through D, on the left-side of the equation. With these definitions, the
command inputs usmq(t) in equation (B.27) can be written explicitly in terms of y., ()
as Uemd(t) = Nynm(t). The plant synthesis model in equation (B.24) for a command

tracking problem is given by,

E() = Azy(t) + Buy(t) + (O)ym(t) (B.29)
yc(t) = Cpxp(t)'*'Dpup(t)"Iym(t) (B-30)
ult) = (O)zy(t) + Tuy(t) — Nym(!) (B31)

where y,,(t) is the command input vector discussed in section B.1. The tracking
errors y(t) and u.(¢) in the performance index of equation (B.1) are now outputs of
the plant model in equations (B.29)-(B.31).

To complete the problem formulation, plant model in equations (B.29)-(B.31) must
be augmented with a command generation model as described in section B.1 to form

the final synthesis model in a command tracking problem.

B.4 Steady-State Responses to External Disturbances

The design problem for disturbance rejection involves the formulation of a perfor-
mance index as in equation (B.1) that contains tracking errors y.(t) = y,(t) — yp..(¢)
and control feedback errors u,(t) = u,(t) —uy,,(t). These error variables can be writ-
ten as outputs of a closed-loop system. The quantities y,,,(t) are the desired outputs
of the closed-loop system in the presence of disturbances. The control inputs u,,,(t)

are used to reject the unwanted disturbances in the output responses and thereby
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enforce zero tracking errors in y,(t) at steady state. We need to establish a set of re-
lations similar to equation (B.27) of the tracking problem for the desired state vector
Z,,,(1) and control inputs u,,,(¢).

Let’s consider a linear time-invariant plant model with control inputs w,(t), dis-

turbance inputs w(t) and outputs y,(t),

Zp(t) = Apzy(t) + Bpuy(t) + Tpw(t) (B.32)
yp(t) = Cpzp(t) + Dpuy(t) + Qpu(t) (B.33)
As before, the desired steady-state system responses are determined by letting T,(t) =

0, up(t) = yp..(t), up(t) — up,,(t) and w(t) — w,,(t) in the limit as ¢ — co. Again,

the dimension of y,(t) must be equal to the dimension of u,(t) so that we have

zp(t) - =Tpw(t) B.34
(upm ) ( ) (B30

Yp(t) — Qpw(t)

where the notation (-),, again denotes the quasi-steady values. The control input

AP BP
C, D,

up,,(t) and the state vector z,,,(t) are now functions of the external disturbances
w,,(t) and the desired outputs y,,,(t). And they may be time-varying.

Note that the system matrix formed by A,, B,, C, and D, in (B.34) is a square
matrix and it must have full rank for its inverse to exist.

We denote the inverse of the system matrix as

[A,, B, _ [1{ M] (B.35)

C, D, L N

where the matrix partitions K through N have the same dimensions as their counter-
parts A, through D, on the left-side of equation (B.35). The plant synthesis model

in equation (B.32) for a disturbance rejection problem is given by

2p(t) = Apzy(t) + Bypup(t) + (0)yp.. (1) + Tpwss(t) (B.36)
Ye(t) = Cpzy(t) + Dypuy(t) - Ty,,, (1) + Qpw,,(t) (B.37)
wlt) = (0)2,(8) + Tup(t) — Nypu,(8) + N (1 (B.38)

The tracking errors y,(t) and u.(t) in the performance index given in equation (B.1)
are now outputs of the plant synthesis model in equations (B.36)-(B.38).
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To complete the problem formulation, the plant model in equations (B.36)-(B.38)
must be augmented with a disturbance model as described in section B.2 to form the

final synthesis model in a disturbance rejection problem.
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Figure B.1: Response of a First-Order Stable Filter to an Impulse Command
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Figure B.2: Response of a First-Order Stable Filter to a Step Command



Appendix C

NONLINEAR CONSTRAINTS ON SYSTEM
EIGENVALUES

Design requirements involving damping ratio and frequency of closed-loop eigen-
values are one of many important design criteria that a feedback control system must
satisfy. For example, flying qualities in the longitudinal axis are often expressed in
terms of desired locations of the short-period and phugoid modes. To achieve the
desired characteristics in the closed-loop eigenvalues, one common design procedure
based on optimal control would be through the use of output penalty variables in the
quadratic performance index. Clearly, a design procedure for closed-loop stability via
a performance index is indirect and necessitates numerous trials before arriving at a

reasonable set of penalty variables.

The reason behind this difficulty is that there is no one-to-one correspondance
between location of closed-loop system eigenvalues and transient responses of output
variables to disturbances. A more direct approach for the assignment of closed-loop
eigenvalues is with the use of direct constraints. The following sections will describe
the formulation of two types of eigenvalue constraints: one type of constraint is on
the real parts of the eigenvalues, and the other is on their damping ratio parameters.
Other variation or extension from these set-ups can be easily implemented by a simple
modification of the proposed schemes; for example, the case involving damping and
frequency constraint requirements that are frequency-dependent. The advantage of
the proposed formulation of eigenvalue constraints is that the constraint functions
in both cases are continuously differentiable with respect to the design parameters
in the system matrix. However the above statement holds only for systems that are

diagonalizable, i.e having a non-degenerate Jordan structure.



C.1 Constraints on the System Eigenvalues
Consider a linear time-invariant system described by the following state model
z(t) = Az(t) (C.1)

where z(t) is a state vector of dimension n, and A is a system matrix of dimension
n x n. System stability is governed by the eigenvalues of the system matrix A defined
by

Avi = A\, (i = 1,...,n) (C.2)

where ); is the i** eigenvalue of the system matrix 4 and v; is the corresponding
eigenvector. For practical purposes and from here on, we assume that the system
matrix A is diagonalizable, i.e. there exists a nonsingular similarity transformation 7T

constructed from a set of n completely independent eigenvectors [vi}i=1....» such that
TT'AT = A (C.3)

= diag (M)ioy, . (C.4)

In this appendix, we examine constraint formulation on two basic parameters of an

eigenvalue A; = oy + jw;, (i = 1,...,n) where j = /=1, namely: (1) its real part o;
and, (2) its damping ratio (; defined as

Ve

Clearly for stability, one must have at least o; < 0 or ¢i >0, (z =1,...,n). Usually

(C.5)

requirements for closed-loop stability are expressible in terms of desired real parts
and damping of system eigenvalues as indicated in figure C.1.

The corresponding constraint inequalities are

i < Omax,(i=1,..,n) (C.6)
G 2 Cmin, (2 =1,...,n) (C.7)
where 0max and {min are design specification parameters. Equations (C.6) and (C.7)

constitute a set of 2n inequality constraints on the system eigenvalues. For conve-

nience and simplicity of implementation, one can employ an equivalent formulation



that yields basically the same results, but would involve only a single inequality con-
straint. To understand the achieved accuracy level of a constrained eigenvalue under
a given tolerance on the inequality constraint, we need to examine, as given in the
following sections, the results corresponding to the constraints on its real part and

its damping ratio separately.

C.1.1 Constraints on the Real Part of System Eigenvalues

An equivalent formulation of equation (C.6) is as
1,
0<o< 2 (C.8)

where ¢ is a preselected tolerance level and the variable o is defined as
1 n
o=3 Z [max(o; — a,m,,(,O)]2 (C.9)
i=1

with omax being the desired maximum real part of the eigenvalues. Note that eigen-
values that satisfy the constraints in equation (C.6) do not contribute to the variable
o; only those eigenvalues that violate the constraints are accounted for in equation
(C.9). Clearly, when the constraint in equation (C.8) is satisfied then the real parts
of the active eigenvalues o,(i = 1,...,n) (i.e. those that contribute to & in equation
(C.9)) are within a tolerance ¢ from the desired bound omax. Note that the param-
cter o is a continuously differentiable function with respect to the design parameters
in the system matrix A. Section C.2 derives the sensitivity function g—% with respect

to a parameter p in the system matrix A that is diagonalizable.

C.1.2 Constraints on the Damping Ratio of System Eigenvalues

An equivalent form of equation (C.7) is
05(5%8 (C.10)

where € is a preselected tolerance level and the variable ¢ is defined as

n

(= %Z [max(a;+ | w; | cot a,0)]? (C.11)

=1
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with cosa = (inin and sina = /1 — (2., where (n is the desired minimum damping
ratio applied to all the system eigenvalues. Physically the constraint variable ( is the
sum of the square of the horizontal distance d; for the eigenvalues with nonnegative
imaginary parts (i.e. w; > 0) that are located above the damping line {min (figure C.2).
Any eigenvalue with nonnegative imaginary part that falls below the damping line
does not contribute to the constraint variable (. Those eigenvalues with negative
imaginary parts (i.e. w; < 0) will contribute the same amount as their complex
conjugate counterparts. When the constraint in equation (C.10) is satisfied, the
damping ratio (; of each active eigenvalue X;(i = 1,...,n) (i.e. one which contributes
to ¢ in equation (C.11)) will be bounded by

Cmin (1 + 5— (ﬁa(min)) S Ci .<_ Cmin (1 + 6+ (ﬁv(min)) ,(l = 1,...,71)

(C.12)
where -
€ 1
b_ | —(min| = -1<0 (C.13)
| oy | 2
! \/cosza + (1 + Ia—c-i) sin o
5. (L,cmm) - 1 S1s0 (cay
| oi |

\/cos7a + (1 - ﬁ)zsin a?

Figure C.3 shows relative levels of accuracies (i.e values of {/({min —1) achieved from
the constraint equation (C.10) as a function of the ratio F's_l’ i.e. plots of é4 (ﬁ, Cm,-n) .
Thus for an actively constrained eigenvalue );, the desired damping ratio (i, is

satisfied to within an acceptable level of accuracy, say 0.01, if the parameter ¢ is

selected such that
€
i ()
foi |

To ensure that all eigenvalues A;(i = 1,...,n) have the desired damping ratio (uin

<0.01 (C.15)

to within a relative accuracy of at least 0.01, the parameter ¢ must be chosen based
on the minimum value of | o; | (Z = 1,...,n). Together with the constraint equation
(C.8) for the real part of the eigenvalues, a reasonable estimate for the minimum of

|oi | (t=1,...,n) would be | o0pnax | -
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C.2  Gradients of the Constraints with Respect to Parameters in the System Matrix

To apply the constraints of equations (C.8) and (C.10) into a control design prob-
lem using parameter optimization, it is often required that gradients of the con-
straint functions (e.g. o and () with respect to a system matrix parameter (e.g.

element (a;;), o) be supplied to the nonlinear optimization algorithm (in this

case, NPSOL fRef.S]). Determination of gradients using finite-difference approxima-
tion can be time-consumming and numerically inaccurate. Whenever possible, it is
more efficient and accurate if expressions of constraint gradients can be derived and
evaluated analytically.

Recall that constraint on real part of the system eigenvalues is formulated as a

constraint on ¢ (equation (C.9)) where

=—Z[max(0', Tmax, 0)) (C.16)

Gradient of o with respect to a parameter p in the system matrix is given by

n 00',' s
;max(a. Omaxs )Fp— (C.17)

Constraint on damping of the system eigenvalues are formulated as a single constraint

on ¢ (equation (C.11)) where
l n
(= 3 > [max(o;+ | w; | cot a,0)]? (C.18)
i=1
Gradient of ¢ with respect to a parameter p in the system matrix is given by

gf) Emax oi+ | w; | cot a,0) (%—: +sgn(w,-)%)p—" cota) (C.19)

where sgn(-) is the sign function (i.e. sgn(z) =1 if z > 0, sgn(z) = 0 if £ = 0, and
sgn(z) = -1 if z < 0).
C.2.1 Sensitivity Function of System Eigenvalues

In this section we derive analytically the sensitivity function of the system eigenvalues

Ai, (=1,...,n) with respect to a parameter p in the system matrix, i.e. %Api.
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From the definition of system eigenvalues given in equation (C.2) we have
Av; = Nv, (1 =1, ...,n) (C.20)

Differentiating both sides of equation (C.20) with respect to a paramecter p (where p

is an element (a;;) . of the system matrix A) to yield

l.,j=l,‘..,

JA ov; O\ Ov;
I+ AZ% 20N )Y 9
apl,-f-Aap 5pv + 9 (C.21)
o ad 12D 0A
V- .
% g, _ 94, ,
(A iI) P . v; 8pv (C.22)

Let T be a transformation that diagonalizes the system matrix A as

T-'AT = A (C.23)
= diag()\;)iﬂwn (C.24)

Multiplying both sides of equation (C.22) by T-! and after some manipulations we

have
[ A 0 0 ]
0
0 A, O
0 0 0 . T—IQ—T'IU,-Q/-\-{-
Op Jp
0 Ay O :
0
0 0 A |
= —T"‘aa—ﬁv; (C.25)

_;‘ - _—(T_l; i (C.26)

i
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where the notation (-); denotes the :* row of the enclosed quantity. Recall that

the i** eigenvalue is A, = o; + Jwi, thus the sensitivities %‘;l and Q(,i* are simply

the real and imaginary parts of %ﬂ respectively. Note that the computation of the
sensitivity function involves the determination of a transformation T consisting of
system eigenvectors v;(i = 1,...,n). For the case where some of the eigenvalues are
repeated and the system does not have a complete set of eigenvectors corresponding
to these eigenvalues, then the sensitivity function associated with these eigenvalues
does not exist.

For a feedback controlled system, one is usually interested in obtaining the sen-
sitivity of the closed-loop eigenvalues with respect to the controller design gain pa-
rameters. In the next section we will establish the relation between the closed-loop

system matrix and the controller state matrices.

C.3  Sensitivity of the Closed-Loop System Matrix with Respect to Controller State

Matrices

Consider a plant model with the following state equations

o
-1

)

zp(t) = Apzy(t) + Byuy(t) (C..
C.28)

yp(t) = Cpxp(t)+Dpup(t) (

[

where z,(t) is the plant state vector of dimension n, u.(t) the control input vector
of dimension m and y,(t) the sensor output vector of dimension p. A linear time-
invariant feedback controller for the above plant is of order r (where r < n) and has

the following state-space description,

Il

z.(t) Acx (t) + Bou(t) (C.29)
ye(t) = Cexc(t) + Deuc(t) (C.30)

where z.(t) is a controller state vector of dimension r and (A¢, B, C., D.) are the
controller state matrices of appropriate dimensions. Note that, in a feedback config-

uration, the plant sensor output vector Yp(t) is connected to the input vector u.(t)
of the controller, and the outputs y.(t) of the controller are the inputs u,(t) of the
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plant. For convenience, we define a matrix A that contains in a compact form the
quadruple (A, B,,C., D.) as follows,

D. C.
B, A.

K = (C.31)

In this formulation, when we refer to an element of the matrix K, we actually address

one of the elements of the controller state matrices A, B.,C., and D..

the following state model for the closed-loop system,
Zp(2)
T.(t)

where A jp5eq 15 the closed-loop system matrix. Stability of the closed-loop system

With the feedback control loops closed and assuming that D.D, = 0, we obtain
A, + B,D.C, B,C.

( z5(t) ) (C.32)
B.(I+D,D.)C, A.+ B.D,C. | \ z.(t)

. xp(t)
= Adosed ( 2(1) ) (C.33)

is determined by the eigenvalues of the matrix Aciosea. The sensitivity of the matrix
A losea With respect to a parameter in the controller state matrix A" (equation (C.31))

can be easily computed if we rewrite the matrix A.joseq as follows,
Aclosed = AO + (BO + [0]\’D0) 1\’00 (C34)

where the matrices Ag, By, Co, Do and I are independent of the controller matrix K

and they are given by

1
4

A, = /(1),, g (C.35)
L 4 (n+r)x(n+r)
B, = 1(’;” (1) (C.36)
L 4 (ntr)x(m+r)
Co = COP ‘; (C.37)
[ L (pr)x(ntr)
D, 0
Dy = | * (C.38)
0 0
L Jpryx(mer)



Iy = [0 0 (C.39)

07 }(n+r)x(m+r)

Let p be the 5" element of the controller matrix K (i.e. p = ki) then the sen-
sitivity 9Aoseq/0p is obtained by differentiating equation (C.34) with respect to p
as

aAc ose ¢ ¢
Blp 2 = (B + IoAi; Do) K Co + (Bo + Ioh Do) Ay; Co (C.40)

where A;; is a matrix of dimension (m + r) x (p + r) with zero cntries except for the
17" element where it is equal to unity. Finally sensitivity of the closed-loop eigenvalue
with respect to a controller parameter p can be obtained using equation (C.40) and
equation (C.26) for the system matrix A.p,eq.

Results presented in this appendix have been implemented in the design algo-
rithm SANDY which combines the two types of nonlinear constraints given in equa-
tions (C.8) and (C.10) into a single inequality constraint. Precisely, the eigenvalue

constraint is defined as

e? (C.41)

BN —

—00 <6y S

d? with

1

n
where c, is given by ¢y = %

maz(o;+ | w; | cote,0) ,z; >0
di =< (ot oo | 0 mz (C.42)
maz(0; — Omax) ,Z; <0
and 1; = o+ | wi | cota. Design specifications on the system eigenvalues are

defined in the parameters o,y > 0 and 0 < a < 7/2 where cosa = Cpmin.
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Figure C.1: Constraint Boundaries for System Eigenvalues
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Figure C.2: Definition of Eigenvalue Real-Part and Damping Ratio Constraints
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Appendix D
MULTIVARIABLE ROBUSTNESS MEASURES

Multivariable stability margins are defined in terms of maximum allowable varia-
tions of gain and phase in the feedback loops according to figure D.1 for multiplicative

type uncertainties. The complex gain matrix A is given by

K = (ko) (D.1)

q,r=1,....m

where m is the number of feedback controls. Note that K is not a function of the
complex frequency s. The border-line for closed-loop stability is when the return-
difference transfer matrix of a nominally stable closed-loop system becomes singular

at some frequency s = jw, i.e.

det [I + G(jw)K] =0 (D.2)

D.1 Robustness Test [

For multiplicative type uncertainties as depicted in figure D.2, instability occurs when

the return-difference matrix becomes singular for some value of s = jw, i.c.

det [I + G(jw)(I + L(jw))] =0 (D.3)
or

det [G™'(jw) + I + L(jw)] =0 (D.4)
Closed-loop stability is therefore guaranteed when

5 (L(jw)) S g (I +G7'(jw)) (D.5)

for w > 0. The operators () and g(-) denote the minimum and maximum singular
values respectively. In terms of the complex gain matrix K of equation (D.1), the

above bound becomes
7(K-1) <a(I+G™(jw)) (D.6)
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If the complex gain matrix is restricted to a diagonal matrix of the form

K = diag (kyee’®) (D.7)

q=1,...,m

then the inequality bound reduces to

max /(1 — kg)? + 2koy(1 — cos ,,) < ming (1 + G™'(jw)) (D.8)

1<g<m

With this relation, gain and phase margins for type I uncertainties are casily computed
from a plot of minimum singular values of the inverse return-difference matrix of the
nominal system. Note that this test requires that the nominal loop gain matrix G(jw)
be nonsingular. If G(jw) becomes singular at some frequency w then this robustness

test is not possible.

D.2 Robustness Test [

For multiplicative type uncertainties as depicted in figure D.3, instability occurs when

the return-difference matrix becomes singular for some value of s = Jw, i.e.
det [I + G(jw)L(jw)] =0 (D.9)

or
det [I+G(jw)+L“(jw)—-]] =0 (D.10)

Closed-loop stability is therefore guaranteed when
5 (L' (jw) = 1) < a(I + G(jw)) (D.11)

forw > 0. In terms of the complex gain matrix K of equation (D.1), the above bound

becomes

5 (K™ =1) < a(I+G(jw)) (D.12)

If the complex gain matrix is restricted to a diagonal matrix of the form

K = diag (ke,e?) (D.13)

q=1,....m
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then the inequality bound reduces to

max \/(1 _.kl_)zJ,Tc?_(l — cos 6,) < ming (I + G(jw)) (D.14)
9

1<g<m 9

With this relation, the gain and phase margins for type II uncertainties are easily
computed from a plot of minimum singular values of the return-difference matrix of
the nominal system. )

Both equations (D.8) and (D.14) will yield bounds which are applicable to simul-
tanous gain and phase variations in every control loop. Stability margins associated
with each test may be combined to produce less conservative bounds. For example, if
the smallest g (I + G(jw)) is 0.7 and g (I + G~(jw)) is 0.6, then in the presence of
phase uncertainties of +30 degrees, the closed-loop system will tolerate simultaneous
gain changes of —2.64 dB to 8.49 dB and —5.44 dB to 1.57 dB respectively. Remem-
ber that robustness test [ requires a nonsingular loop system matrix G(jw). If this
is not the case, then robustness test I can not be used to improve the estimates of

multivariable stability margins.

D.3 Effects of Scaling on Robustness Bounds

Estimates of multivariable stability margins of type I and type II computed from
equations (D.8) and (D.14) can be i'mpvi"oved by scaling the system matrices G(jw),
since singular values are not invariant under a similarity transformation. However,
the characteristic cquation of the nominal closed-loop system is unaffected by scale
changes. This follows from the fact that, while det (7 + RG(jw)R™") = 0 is equivalent
to det (7 + G(jw)) = 0 for any nonsingular transformation R, their singular value
norms g (I + RG(jw)R™") and g (I + G(jw)) can be much different.

In fact, bounds on gain and phase variations determined from equations (D.§)
and (D.14) can be improved by rescaling the loop transfer matrix G(s). If the type of
loop uncertainty is restricted to a diagonal complex gain matrix in equation (D.7) and
we only consider diagonal scaling matrices D = diag(d;)i1,...m, then the left-hand
side of equations (D.8) and (D.14) remain unchanged from the scaling of the return-
difference and inverse return-difference transfer matrices. Increasing the minimum
singular values through diagonal scaling will give less conservative estimates of the
multivariable stability margins determined from equations (D.8) and (D.14).
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D.4 Osborne’s Method for Pre-Conditioning of Matrices

Reference 22 describes a method for pre-conditioning of matrices. The procedure
involves the minimization of the euclidean (or Frobenius) norm of a square matrix
through diagonal similarity transformations. The method is easily programmed for
numerical solutions and is seen to converge quite rapidly. The euclidean norm of the

matrix A is defined as

AR =33 lag P (D.15)

=1 3=1

The minimization problem becomes
mgn IDAD™'||? (D.16)

over all real diagonal scaling matrices D. For simplicity, we can take each diagonal

element d; of D = diag(d,,...,d,) as a free variable. The product of DAD™!

-1y o G4 o,

(DAD Lj_ Z (D.17)

Thus, as the element d; varies, only the j** column and j** row of the matrix DAD™!
are affected, leaving the jth diagonal element of the product unchanged. The square
of the euclidean norm ||[DAD!||? can be rewritten to explicitly show the dependency

on the single varying parameter d; as

non 22
IDADT2 = 330 SR (D-19)
=1 5=1 d?
" la 2 LS d2 a;
S oL S SPIPNRE D) pii LN CRE)
B9 7
1
= ﬁn+?s+c (D.20)
k

This expression is minimized when

(D.21)

x|

d
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Therefore the euclidean norm of A may be minimized with respect to the element
dg of D inone step. Osborne’s algorithm consists of stepping through each element
di from k = 1,...,n, and repcating the process over again until the norm |DAD='|.
can no longer be improved and therefore has converged to the global minimum. It
should be noted that the method is guaranteed to work only if the matrix A is in
a form that is irreducible by permutation matrices. Otherwise, the algorithm would

fail with either quantities S or R being equal to zero.

D.5 Improving the Multiloop Stability Margins through Diagonal Scaling

Our problem for improving the estimates of multivariable stability margins with di-

agonal scaling is stated as
max g (D(I + G(jw))D™") (D.22)

Recall that the minimum and maximum singular values are related by

1

= — 2!
a(A) 6,(A—I) (D 3)
so that our problem can be reformulated as
mDin&(D(I-i-G’(jw))“D") (D.24)

The maximum singular value of a matrix A is related to the euclidean norm of A

as

a(A) < || Al (D.25)

Hence, minimizing the euclidean norm of D(I + G(jw))~'D~! would lower the upper
bound on & (D(I + G(jw))~'D~') in equation (D.24). So if the loop transfer matrix
is poorly scaled, Osborne’s method provides a way for improving the estimates of the

actual multivariable stability margins.
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G(s) >

Figure D.1: Feedback System for Evaluation of Multivariable Stability Margins

»{ [+L.(s)

G(s) >

Figure D.2: Type I Multiplicative Perturbation where L(s) = 0 (nominal)

» L(s)

G(s) >

Figure D.3: Type II Multiplicative Perturbation where L(s) = I (nominal)



Appendix E
TSRV B-737 DYNAMIC MODELS

Longitudinal aircraft rigid-body dynamic models are obtained for the NASA Lan-
gley Transport Systems Research Vehicle (TSRV). It is a highly modified Boeing
737-100 aircraft for research in advanced guidance, navigation, control and display
concepts [Refs.12-14,24]. Linear dynamic models in the wind-axis are given in the
form

Zp(t) = Apzy(t) + Bpuy(t) (E.1)

State and control input vectors are

27(t) = {u(t), a(t), a(), 0(2)) (E2)

and
uy (t) = {82(t),6.(1)} (E.3)

respectively where

u(t) = forward velocity component (fps)

a(t) = angle of attack (rad)

q(t) = pitch attitude rate (rad/sec)

6(t) = pitch attitude (rad)

6t = total engine thrust (Ibs)

be = elevator control position (deg)

Two flight conditions were chosen for this investigation. One is an approach to landing
condition and the other is a high-altitude cruise flight condition. Parameters for each
flight condition are listed in tables E.1 and E.2 for trimmed flight. The state dynamic

matrix A, and control input matrix B, for flight condition FLT1 are

[ _0.4697 x 10-'  17.09 0 —32.12

A — | —01524x 1072 —0.7136 09995  0.8295 x 10-2 (E4)
’ —0.4397 x 10~ -1.235 —0.5020 —0.3233 x 10~° '

0 0 1.0 0

. -




0.40177 x 1073

—0.89059 x 10~7
0.63002 x 10~°
0

B, =

0
—0.77001 x 10~
—0.19737 x 107!
0

For flight condition FLT?2, the matrices A, and B, are

[ _0.7055 x 102

—0.1275 x 10~3

0.3532 x 10~*
0

0

0.40210 x 103
—-0.10185 x 10~7
0.62982 x 10~°

2130 O
—-1.032  0.9976
-6.948 —1.009

0 1.0

0

—0.10562 x 1072

—0.99133 x 107!
0

-32.17
0.8341 x 107
0
0

(E.5)

(E.6)

(E.7)

Control actuation dynamics are modeled as a continuous linear time-invariant

system of the form

iact(t) =
up(t) =

Aacgl'act(t) + Bactuact(t)
Cactl'ac!(t) + Dactuact(t)

(E.8)
(E.9)

where ,.(t) contain the actuator model states and u,.(t) the actuator command

inputs. For both flight conditions, we use the following actuator dynamic model,

() -2 2
Iy(t) = 0 -10
z3(t) 0 0

0 I](t)
0 Ig(t) +
—-16 I3(t)
z1(t)
o) [3:
z3(t)

0 0

57c(t)

10 0 5.(1)
0 16 “

érc(t)
bec(t)

)(E.IO)

(E.11)
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érc(t) = total thrust command (lbs)
b.c(t) = elevator position command (deg)
ér(t) = total thrust output (Ibs)

6.(t) = elevator control position (deg)

Table E.1: TSRV B-737 Trim Parameters at Flight Condition FLT1

Parameter Value
Altitude (ft) 1500
Gross Weight (1bs) 80000

Calibrated Airspeed (kts) | 120
Center of Gravity Position | 0.2

Flap Position (deg) 40
Flight-Path Angle (deg) -3
Gear Position down

Table E.2: TSRV B-737 Trim Parameters at Flight Condition FLT2

Parameter Value
Altitude (ft) 25000
Gross Weight (1bs) 80000

Calibrated Airspeed (kts) | 450
Center of Gravity Position | 0.2
Flap Position (deg) 0
Flight-Path Angle (deg) 0

Gear Position up




Appendix F

COMMAND PROCEDURES FOR DESIGN AND
ANALYSIS

Command procedures to set up the design synthesis models and perform robustness
analysis for the AFCS controller design are written for the control system analysis and
design software MATLAB'. Command m-files for M AT LAB are used to develop the
appropriate plant and controller models for use with the computer program SANDY
and to perform multivariable robustness analysis. SANDY command files listed here

contain the actual design values used in the final optimized AFCS designs.

F.1 MATLAB Command Files

F.1.I Formulation of the Synthesis and Controller Models

A M AT LAB function command file was used to compute state-space representations
of the plant and controller models to be used as input data files to the computer

program SANDY . A listing of this command file called msystem is given below.

function msystem(filename,filenamel,filename2)

W/

%// system(filename,filenamel,filename2)

%// computes the state-space representations of

4// the plant (B-737) and controller (TECS) and closed loop system
%“// for optimization to step commands in the constrained parameter
%// optimization program SANDY.

W/
%// Data Input: A737W - Windaxis aircraft model (fps,rad,sec)
W/ B737W - Windaxis aircraft model (fps,rad,sec,lbs,deg)

%// VTBO - True airspeed (fps)

%// GRAVITY - Gravitational acceleration (fpss)

W/ ALT - Altitude (ft)

W/ LU - Ugust factor at altitude (fps)

1 A trademark of MathWorks, Inc.
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W/ LW - Wgust factor at altitude (fps)
W/ kgw - Aircraft gross weight (1bs)
W/ kti - thrust integral gain

W/ ktp - thrust proportional gain

W/ kei - elevator integral gain

W/ kep - elevator proportional gain
%// kv - Outer loop gain

A// kh - Outer loop altitude error gain
%// Output Systems:

W/

W/ #*+#x Formulate the Plant State-Space Matrices *#s#
4// System model : xpdot = Ap*xp + Bp*u + Gp*w

W/ yp = Cp#xp + Dp*u + Omegap*w

%//where xp = [V(fps),Alpha(deg),Q(deg),Theta(deg),Xdthi(1bs),Xdth2,Xde3(deg),
W/ Xgustv(fps),Xgustwi(fps),Xgustw2,H(ft)]

W/ u = [Dthc(1lb),Dec(deg),Vcs*(fps)]

w/ w = [Etav(fps),Etaw(fps),Gammac(deg),Vdotc(ft/sec~2),Vc(fps),Hc(ft)]
W/ y = [Gamma(rad),Vdot(g),Q(rad/sec),Theta(rad),(V-Vc)(fps),

W/ (Gamma-Gammac) (deg), (H-Hc) (ft),Gammac(deg),Vdotc(ft/sec"2),
Y444 V(fps),Alpha(deg),Xdthi1(1bs),Xde(deg),Xgustv(fps),

w/ Xgustwi(fps) ,H(ft),Nz(g)]

%//where: x = [xIE,xIL,xVc]

W/ uc = [Gamma(rad),Vdot(g),Q(rad),Theta(rad),(V-Vc)(fps),

'/ (B-Hc) (ft), Gammac(deg),Vdotc(ft/sec”2)]

W/ yc = [Dthc(lbs/1bs),Dec(rad),Vc*(fps)]

%#Create the Plant Model and Controller Design Gains

eval([’load ’, filename]);

%Conversion Constants

r2d=180/pi; % //Radians to degrees

d2r=pi/180; % //Degrees to radians

%Dryden Turbulence Filters

alphau=vtb0/1lui;

numv=[sqrt(2#alphau)];’ //numerator coefs. for u-gust filter

denv=[1 alphau]; % //denominator coefs. for u-gust filter
alphaw=vtb0/1w;

numw=sqrt(3+*alphaw)*[1 alphaw/sqrt(3)];% //num. coefs. for w-gust filter
denw=[1 2%.95%#alphaw alphaw~2]; % //den. coefs. for w-gust filter
w2alpha=r2d/vtb0; % //conversion factor from w-gust to alpha-gust(deg)
(av,bv,cv,dv]=tf2ss(numv,denv);

[aw,bw,cw,dw]=tf2ss (numw,denw);
(agust,bgust,cgust,dgust]=append(av,bv,cv,dv,aw,bw,cw,dw);

% //State-Space Realization of u,w-gust Filters

%Gain Schedules
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kgw=wg; i// Gross weight

kcas = (200/vtb0)~2;% //elevator gain schedule
%Actuator Dynamic Models
aact = [-2 2 0; % //actuator state model
0 -10 0; 4 // x = [Xdthi,Xdth2,Xde1]
0 0 -16];% // wu = [Dthc(lbs/1bs),Dec(rad)]
bact =[o 0; % // 'y = [Dth(1lbs),De(deg)]
10*kgw 0;
0 i6«kcassr2d];
cact = [1 0 0;
o} 0 1]1;
dact = O*eye(2);
“Airplane Longitudinal Dynamics
a737 = a737w;

a737([2 3 4],:)
a737(:,[2 3 4])
b737 = b737w;
b737([2 3 4]1,:) = b737([2 3 4],:)*r2d;Y% //Convert B737w to fps and deg.
ap = [a737 b737*cact a737(:,[1 2])*[1,0;0,w2alphal *cgust;
zeros(3,4) aact zeros(3,3);
zeros(3,4) zeros(3,3) agust];
% Addition of the Altitude State
aplant = [ap zeros(10,1);
0 -vtbO*d2r O vtbO*d2r 0 0 0 0 0 0 0];

a737([2 3 4],:)*r2d;
a737(:,[2 3 4])*d2r;% //Convert A737w to fps and deg.

bp = {zeros(4,3);

[bact,zeros(3,1)];

zeros(4,3)];
gp = [a737(:,[1,2])*dgust;

zaros(3,2);

bgust

0 0];
bplant = [bp gp zeros(11,4)];
W/ y = [Gamma(rad),Vdot(g),Q(rad/sec),Theta(rad),(V-Vc)(fps),
W/ (Gamma-Gammac)(deg),(B-Hc)(ft),Gammac(deg),Vdotc(ft/sec‘Q),
W/ V(fps),Alpha(deg),Xdth1(1bs),Xde(deg),Xgustv(fps),
W/ Xgustwi(fps),B(ft),Nz(g)] '
cplant = [0 -d2r 0 d2r 0 0 0 0 0 0 O

aplant(1,:)/gravity
00d2r 00000000
000d2r 000000 0
10000000000
0-1010000000
00000000001
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00000000000

000000000O00O0

10000000000

01000000000

0 i 00000

0 0 10000

[zeros(2,7),cgust,zeros(2,1)]

00000000001
vtb0/gravity*d2r*(aplant(4,:)-aplant(2,:)) 1;

dplant = [zeros(17,8)];

dplant(5,3) = -1;dplant(5,8) = -1;

dplant(6,6)=~1;

dplant(7,9) = -1;

dplant(8,6) 1;

dplant(9,7) = 1;

dplant(17,:) = vtb0/gravitys*(bplant(4,:)-bplant(2,:));

%Save the Plant Synthesis Model into filenamei

eval([’save ’,filenamei,’ aplant bplant cplant dplant’]);

o] 00 0
0 00 0

1244

W/ **++* Formulate the Controller State-Space Matrices *ss&#
“// Initial

W// System model : xcdot = Ac*xc + Bc#uc

W/ yec = Cc*xc + Dc*uc

A//where: x = [xIE,xIL,xVc]

'/ uc = [Gamma(rad),Vdot(g),Q(rad),Theta(rad),(V-Vc)(fps),
W/ (B-Hc)(ft), Gammac(deg),Vdotc(ft/sec~2)]

W/ yc = [Dthc(lbs/lbs),Dec(rad),Vct(tps)]

W/

acont = [zeros(3,3)];

beont = [-1 -1 0 0 kv kh d2r 1/gravity
1 -100 kv -kh -d2r 1/gravity

0 0000 0 O 1 1;
ccont = [kti 0 O
0 kei 0O
0 0 ki];
dcont = [-ktp -ktp 0 0 000 O
kep -kep kq ktheta 0 0 0 0
0 0 0 0 00k201];

%Save the Controller State model in filename?2
eval([’save ’,filename2,’ acont bcont ccont dcont’]);
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F.1.2  Multivariable Robustness Analysis

Multivariable robustness measures described in Appendix C.3 involve computation
of the minimum singular values of the return difference and inverse return difference
transfer function matrices at different frequencies. M ATLAB function files were
devised for computing the minimum singular values of these transfer function matrices
from the state-space representation of the broken-loop systems. Osborne’s method
[Ref.22] is used to improve the minimum singular values through diagonal scaling of
the loop gain transfer function matrices. The MATLAB command files svdrtd and
svdirtd are user-defined functions for computing the minimum singular values of the
return-difference and inverse-return-difference transfer function matrices respectively.

Their listings are shown below.

function [OMEGA,SIGMA]=svdrtd(i,B,C,D)
clg;

J=sqrt(-1);

(NI10,N10]}=size(D);

[NS,KS]=size(A);

DEL=0.00001;

NPTS=100;

OMEGA =logspace(-2,2,NPTS);

R = eye(NIO);

RoldIMi=eye(NIO);

for I=1:NPTS;

M = eye(NID) + (C#inv(J*OMEGA(I)*eye(NS)-A)#*B+D);

MI = inv(M);
RoldI = eye(NIO);
rk = 2;

k=1

while abs(rk-1) > DEL;
rsum = 0.0;
for 1=1:NI10;rsum=rsum+abs(MI(k,1))"2.0;end;
rsum = rsum - abs(MI(k,k))"2.0; :
csum = 0.0;
for 1=1:NIOD;csum=csum+abs(MI(1,k))"2.0;end;
csum = csum - abs(MI(k,k))"2.0;
if rsum "= 0.0;
if csum "= 0.0;
rk = (csum/rsum)-0.25;
R = eye(NIOD);
R(k,k) = rk;



RoldI = RoldI#*R;
end;
elseif rsum == 0.0;
rk = 1.0;
R = RoldIMi;
Roldl = R;
elseif csum == 0.0;
rk = 1.0;
R = RoldIM{;
RoldI = R;
end;
M = Re#Mxinv(R);
MI = inv(M);
k=k+1;
if k > NIO; X = 1{;end;
end;
SIGMA(I)=min(svd(M));
RoldIMi=RoldI;
end
axis([-2,2,0,2]);
semilogx (OMEGA,SIGMA);
xlabel(’'Frequency (Rad/Sec)’);
ylabel(’Sigma’);
grid;

title(’Minimum Singular Value of the Return-Difference Matrix’);

rmin=min(SIGMA)

JMultivariable stability margins
MIMOGK=[-20%*1og10(1+rmin),~20*1ogi0(1-rmin)]
MIMOPM=[~-acos(1-rmin~2/2)*180/pi,acos(1-rmin~2/2)*180/pi]

function [OMEGA,SIGMA]=svdirtd(A,B,C,D)
clg;

J=sqrt(-1);

[NIC,NID]=size(D);

[NS,NS]l=size(A);

DEL=0.00001;

NPTS=100;

OMEGA =logspace(-2,2,NPTS);

R = eye(NIO);

RoldIMi=eye(NID);

for I=1:NPTS;

M = eye(NIO)- inv(C*inv(J*OMEGA(I)*eye(NS)-A)*B+D);
MI = inv(M);

RoldI = eye(NIO);



rk
k =

:2;
1;

while abs(rk-1) > DEL;

rsum = 0.0;

for 1=1:NI0;rsum=rsum+abs(MI(k,1))"2.0;end;
rsum - abs(MI(k,k))"2.0;

H

rsum
csum = 0.0;

for 1=1:N10;csum=csum+abs(MI(1,k))"2
csum = csum - abs{MI(k,k))"2.0;

if rsum "= 0.0;

if csum "= 0.0;

rk = (csum/rsum)-0.25;

R = eye(NID);

R(k,k) =

RoldI = RoldI#*R;

end;
elseif rsum ==
rk = 1.0;
R = RoldIMi;
RoldI = R;
elseif csum ==
rk = 1.0;
R = RoldIM{;
RoldI = R;
end;
M = R*M*inv(R);
MI = inv(M);

k=k+1;

if k > NIO; k = 1;end;
end;

rk;

0.0;

0.0;

SIGMA(I)=min(svd(M));

Rol
end
axi

dIM1=RoldI;

S(['2.2,0,2]);

semilogx (OMEGA,SIGMA);

xlabel(’Frequency (Rad/Sec)’);

yla
gri

title(’Minimum Singular Value of the Inverse-Return-Difference Matrix’);

i

“Multivariable stability margins
HIHOGH=[20*10510(1—rmin),20#10310(1+rmin)]
HIHDPM=[-acos(1-rmin‘2/2)*180/pi,acos(i-rmin‘2/2)t180/pi]

bel(’Sigma’);
d;

n=min(SIGMA)

153
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F.2 SANDY Design Data Files

Data files for use with the computer program SANDY contain design information
such as weighting matrices in the performance indices, linear constraints and nonlinear
constraints. The SANDY data file for the optimized TECS inner-loop design in
chapter 5 at flight condition FLT1 is shown in Appendix G, while the one for flight
condition FLT2 is shown in Appendix H.



Appendix G

DESIGN DATA FILE FOR TECS INNER-LOOP AT
FLIGHT CONDITION FLT1

’Nf{cmax’
l'rtl
'Tfctor’
)Npm)

,Hp,

)F)
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DESIGN DATA FILE FOR TECS INNER-LOOP AT
FLIGHT CONDITION FLT2
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